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So what is graph learning?



Graph learning
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Graph-level 
prediction,
Graph 
generation
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Graph level

Vertex level

Subgraph level

Edge/link level

Prediction and classification problems on graphs



Examples
Vertex classification: categorise online user/items, 
location amino acids (protein folding, alpha fold)


Link prediction: knowledge graph completion, 
recommender systems, drug side effect discovery


Graph classification: molecule property, drug 
discovery


Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure 
based solely on its amino acid sequence
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Image credit: DeepMind
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Items

Users

� Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

� Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”

Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node 
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018
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Many patients take multiple drugs to treat 
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat 

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict 

adverse side effects

,

Prescribed 
drugs

Drug
side effect

30% 
prob.

65% 
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

� Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials: 
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN
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Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
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Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning
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Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu
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Graphs are everywhere!

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph learning methods are thus widely applicable
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Graph learning methods are thus widely applicable

How is learning typical done?
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Embedding-based graph learning

𝒢 =  all graphs 𝕐 =  output space

Embedding method
ℝd

…

The world of  
classical ML



What’s new?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network


Support vector machines


…

𝒢 𝕐 = ℝ101
2

3
4

5
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Invariant embeddings

G ∈ 𝒢

We need embeddings to be graph invariants 


Isomorphic inputs should give the same result 
genericity in query languages

for all G, all isomorphisms π,  and v ∈ Vp
G : ξ(G, v) = ξ(π(G), π(v))

ξ : 𝒢 → (𝒱p → 𝕐 ) : (G, v) ↦ ξ(G, v)-vertex embeddingp is invariant if

Invariance is achieved by composing invariant building blocks to build 
embeddings



Graph learning (semi-supervised)
Given training set  and hypothesis class  of  invariant embedding 
methods


Empirical risk minimisation: Find embedding  in  which 
minimises empirical loss on training set :  


𝒯 ℋ

ξ ℋ
𝒯

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Solved using backpropagation/gradient descent like optimisation 
algorithms




Graph learning (semi-supervised)
̂ξ : arg min

ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

We know now what graph learning is but what are these hypothesis classes?



Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris



Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris



ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN
Simplicial MPNNs

k-GNNs
k-FGNNs

k-LGNNs

SGNs
GatedGCNs

Walk GNNs

Reconstruction GNNs
Ordered subgraph Networks

GNN as Kernel
Nested GNNs

Hypothesis classes
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How to compare different classes?
How to compare such embedding classes theoretically?


How to bring order to the chaos?

1.   See graph embedding methods as 
queries in some query language

2.   Analyse expressive 
power of  query language


3. Transfer 
understanding back to 
graph learning world


What 
kind of  

language?

Expressive 
power?
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Graph Embedding Language (GEL)

Most methods are specified in terms of  linear algebra computations 
interleaved with non-linear function applications


Crucial component is multiplication with adjacency matrix which 
corresponds to neighbourhood aggregation

Desired language needs function application and aggregation



Graph Embedding Language (GEL)

Most methods are specified in terms of  linear algebra computations 
interleaved with non-linear function applications


Crucial component is multiplication with adjacency matrix which 
corresponds to neighbourhood aggregation

Desired language needs function application and aggregation

Let us see first see an example of  an embedding class ℋ



Graph Neural Networks 101
Non-linear activation function  (ReLU, sign, sigmoid, …)


 denotes embedding of  vertices in graph G 


Weight matrices  and  and bias vector 


σ

F(t)
G ∈ ℝn×d

W(t)
1 ∈ ℝd×d W(t)

2 ∈ ℝd×d b ∈ ℝ1×d

F(t)
G := σ (F(t−1)

G W(t)
1 + AGF(t−1)

G W(t)
2 + B(t))

Initial hot-one embedding of  vertex labels

Aggregation over 
neighbours

Matrix form

F(0)
G

0.1 31 8 4.03
5 0.03 9.7 −1

−3 118 −63 0.204

v1v2v3

Adjacency matrix

∈ ℝn×d



GNN 101: Graph embedding
Weight matrix  and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

Aggregation over all 
vertices

FG := σ ∑
v∈VG

F(L)
G W + b ∈ ℝ1×d

Hypothesis class  consists of   parametrised by weights


Empirical Risk Minimisation: Find best parameters    

ℋ ξω : G ↦ FG

W(1)
1 , …, W(L)

1 , W(1)
2 . …, W((L)

2 , W, b(1), …, b(L), b



Graph Embedding Language (GEL)

ξφ : 𝒢 → (𝒱ℓ → ℝd)

 of  dimension  and free variables φ(x) d x = {x1, …, xℓ}

GEL expression

Higher order embedding

Syntax

Semantics

It is really just going to be a simple version of  a query languages with 
aggregates studied in database theory and it resembles Datalog∘

Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)

Abo Khamis, Ngo, Pichler, Suciu, Wang: Convergence of  Datalog over (Pre-) Semiring.. (2022)

G. and Reutter: Expressiveness and approximation properties of  graph neural networks. (2022)




ξφ(G, xi/v, xj /w) := {1 (v, w) ∈ EG

0 otherwise

ξφ(G, xi/v) := j th feature of v

ξφ(G, xi/v, xj /w) := {1 v = w
0 otherwise

SemanticsAtomic expressions

Label:                          of  dim 1 and free var  


Edge:                            of  dim1, free vars  


Equality:                              of  dim 1, free vars  

xi

xi, xj

xi, xj

φ(xi, xj) := E(xi, xj)

φ(xi) := Labj(xi)

φ(xi, xj) := 1[xi = xj]

Atomic GEL expressions



Let  be GEL expressions of  dim  and free vars 

Let  be a function. Then,


is again a GEL expression of  dim  and free vars 

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application



Let  be GEL expressions of  dim  and free vars 

Let  be a function. Then,


is again a GEL expression of  dim  and free vars 

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application

Semantics

ξφ(G, x/v) := F(ξφ1
(G, x1/v1), …, ξφℓ

(G, xp/vp)) Linear algebra

Activation functions


Anything you want…
∈ ℝd

∈ ∈
ℝd1 ℝdℓ



§
Let  and  be GEL expressions of  dim  and  and free vars  Let  
be a function mapping bags of  vectors in  to a vector in . Then,


  is a GEL expression of  dim  and free vars 

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

w ∈ V|y|
G



§
Let  and  be GEL expressions of  dim  and  and free vars  Let  
be a function mapping bags of  vectors in  to a vector in . Then,


  is a GEL expression of  dim  and free vars 

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

w ∈ V|y|
G

guard
ξφ2

(G, x/v, y/w) ≠ 0



GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute?
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GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute? Triangle count

Let us see a more elaborate example



Message Passing Neural Networks
We define 

Then for , we get


φ(0)(x1) := 1[x1 = x1]
t > 0

φ(t)(x1) := 𝖴𝗉𝖽(t)(φ(t−1)(x1), 𝖺𝗀𝗀Θ(t)

x2
[φ(t−1)(x2) |E(x1, x2)])

For readout layer, we get


φ := 𝖺𝗀𝗀Θ
x1

[φ(L)(x1) |1[x1 = x1]])

Gilmer, Schoenholz, Riley, Vinyals, Dahl.: Neural message passing for quantum chemistry. (2017)

edge guarded aggregation

This encompasses the GNNs 101

dummy guard 



MPNNs including readout phase fit in GEL2(Ω, Θ)

Fragments of  GEL
GEL : k variable fragment of  GEL with functions in  and 
aggregations in 


GGEL : 2 variable fragment GEL with edge guarded 
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

MPNNs without readout phase fit in GGEL(Ω, Θ)
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Fragments of  GEL
GEL : k variable fragment of  GEL with functions in  and 
aggregations in 


GGEL : 2 variable fragment GEL with edge guarded 
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of  graph neural networks. (2022)


Most hypothesis classes

 fit in one of  those fragments! GGEL2

GEL2

GEL3

GELk



How to compare different classes?
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Which inputs can be separated/distinguished by embeddings in ?


 Captured by the following equivalence relation on :
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Distinguishing power
Which inputs can be separated/distinguished by embeddings in ?


 Captured by the following equivalence relation on :

ℋ

𝒢 × 𝒱p

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

Strongest power:  powerful enough to detect non-isomorphic 
graphs:  only contains isomorphic pairs


Weakest power:  cannot differentiate any two graphs:  
contains all pairs of  graphs.

ℋ
ρ(ℋ)

ℋ ρ(ℋ)



Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

methods  is more powerful than methods 

 methods  is bounded by methods  in power

1 2

2 1

ρ(methods1) = ρ(methods2)

Both methods are as powerful

Allows for comparing different classes of  embeddings methods

Allows for comparing embedding methods with algorithms, logic, … 
on graphs



Expressive power in ML community

Focus has been on characterising the distinguishing power of  classes 
of  embedding methods.


Hopefully, characterisations of   shed light on what graph properties 
a learning method in can detect/use.

ℋ

ρ(ℋ)
ℋ



Expressive power in ML community

Focus has been on characterising the distinguishing power of  classes 
of  embedding methods.


Hopefully, characterisations of   shed light on what graph properties 
a learning method in can detect/use.

ℋ

ρ(ℋ)
ℋ

We will obtain logic-based characterisations



Logic
First-order logic with k variables and counting quantifiers ( ).Ck

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))
unary label predicatebinary edge predicate

Given graph , vertex  satisfies :G v ∈ VG φ It has at most 5 neighbours 

each with at least two neighbours labeled “a”

k=2

Guarded fragment  of  


              only existential quantification for the form 

𝖦𝖢2 𝖢2

∃≥ny(E(x, y) ∧ φ(y))



Expressive power of  GEL

ρ(GELk(Ω, Θ)) = ρ(𝖢k)
Theorem  (G. and Reutter 2022)

ρ(GGEL(Ω, Θ)) = ρ(GC2)
Theorem  (Xu et al. 2019, Morris et al. 2019, G. and Reutter 2022) 

Lower bounds:  contains linear combinations, concatenation, product (or 
activation functions) and  contains summation

Ω
Θ

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001) 

Cai, Fürer, Immerman: An optimal lower bound on the number of  variables for graph identification. (1992) 

G., Reutter: Expressiveness and approximation properties of  graph neural networks. (2022)

M. Grohe: The logic of  graph neural networks. (2021)

The following results follow from standard analysis of  aggregate query 
languages: all real number arithmetic can be eliminated.



Consequences
If  embedding method M can be cast in GEL  then 


If  embedding method M can also encode formulas in  then 

k(Ω, Θ) ρ(𝖢k) ⊆ ρ(M)

𝖢k ρ(𝖢k) ⊇ ρ(M)
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Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: 
Higher-order graph neural networks. (2019

Maron, Ben-Hamu, Serviansky, Lipman: Provably powerful graph networks. (2019)

Maron, Fetaya, Segol, Lipman: Invariant and equivariant graph networks. (2019)

G. The expressive power of  kth-order invariant graph networks. (2019)

G.,Reutter: Expressiveness and approximation properties of  graph neural networks. (2022)



Consequences
If  embedding method M can be cast in GEL  then 


If  embedding method M can also encode formulas in  then 

k(Ω, Θ) ρ(𝖢k) ⊆ ρ(M)

𝖢k ρ(𝖢k) ⊇ ρ(M)

ℋ
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Graphormer
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CWN
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k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN
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k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

GGEL
GEL2

GEL3

GELk

“Automatic” upper bounds on 
distinguishing power.

 Needs case-by-case analyse to show 
“hardness”

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: 
Higher-order graph neural networks. (2019

Maron, Ben-Hamu, Serviansky, Lipman: Provably powerful graph networks. (2019)

Maron, Fetaya, Segol, Lipman: Invariant and equivariant graph networks. (2019)

G. The expressive power of  kth-order invariant graph networks. (2019)

G.,Reutter: Expressiveness and approximation properties of  graph neural networks. (2022)



GNN 101

Can we train a GNN 101 which

 embeds G differently from H? 

ρ(GNN101) = ρ(C2)
Theorem  (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019
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GNN 101

Can we train a GNN 101 which

 embeds G differently from H? 

ρ(GNN101) = ρ(C2)
Theorem  (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019


NO!

G H

G and H are known to be 
indistinguishable by  

(pebble game argument)
𝖢2

⇒ (G, H) ∈ ρ(𝖢2) = ρ(GNN101)

GNN 101s, MPNNs are pretty weak
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GNN 101

Can we train a GNN101 such 

that P embeds differently from NP? 

ρ(GNN101) = ρ(C2)
Theorem  (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019


YES!

P satisfies  but NP does not ∃=1x∃=1y E(x, y)

⇒

(P, NP) ∉ ρ(𝖢2) ⇒ (P, NP) ∉ ρ(GNN101)

single degree one node



 

if  and only if  


   for all trees 


(G, H) ∈ ρ(𝖢2)

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

Beautiful connections

Also connections to the combinatorial graph algorithms color refinement 
and higher-dimensional Weisfeiler-Leman graph isomorphism tests.

Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of  homomorphisms. (2010)

Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)

 

if  and only if  


  for all graphs P of  treewidth p 


(G, H) ∈ ρ(𝖢p+1)

𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

Theorem (Dell et al. 2019, Dvorák 2010)

Cai, Fürer, Immerman: An optimal lower bound on the number of  variables for graph identification. (1992) 

M. Grohe: The logic of  graph neural networks. (2021)

Important class of  

MPNNs can only detect 

tree-based information



Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .


Which embeddings can be approximated by embeddings in ?

ℋ

ℋ



Approximation properties
Equip the set of  graphs  with a topology and assume that  
consists of  continuous graph embeddings from  to .


Let  be a compact set of  graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

Azizian, Lelarge: Characterizing the expressive power of  invariant and equivariant graph neural networks (2021)

G., Reutter: Expressiveness and approximation properties of  graph neural networks (2022)




Approximation properties
Equip the set of  graphs  with a topology and assume that  
consists of  continuous graph embeddings from  to .


Let  be a compact set of  graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

 If   is closed under linear combinations and 
product, then  can approximate any continuous 

function  satisfying


ℋ
ℋ

Ξ : 𝒞 → ℝ
ρ(ℋ) ⊆ ρ({Ξ}) .

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Can be generalised to embeddings with output space ℝd

Stone-Weierstrass

Azizian, Lelarge: Characterizing the expressive power of  invariant and equivariant graph neural networks (2021)

G., Reutter: Expressiveness and approximation properties of  graph neural networks (2022)




MPNNs: Approximation
On compact set of  graphs, MPNNs can approximate any continuous graph 
embedding  satisfying 
Ξ : 𝒞 → ℝ ρ(𝖢2) ⊆ ρ({Ξ})

Theorem 


Intricate relation between distinguishing power and approximation properties

G H
(G, H) ∈ ρ(MPNN) ⇒

Cannot approximate graph 
functions based on 

- connected components

- 3-cliques

-

Azizian, Lelarge: Characterizing the expressive power of  invariant and equivariant graph neural networks (2021)

G., Reutter: Expressiveness and approximation properties of  graph neural networks (2022)




Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .


Which embeddings can be approximated by embeddings in ?


What is the VC dimension of  ?

ℋ

ℋ

ℋ



VC dimension
A set of  graphs  can be shattered by  if  for any boolean 
vector , there is a  such that  for all 


We define the VC dimension of   on  as


G1, …, Gs ℋ
τ ∈ {0,1}s ξτ ∈ ℋ ξτ(Gi) = τi i = 1,…, s

ℋ 𝒢′￼ ⊆ 𝒢

𝖵𝖢𝒢′￼
(ℋ) ≤ |𝒢′￼/ρ(ℋ) |

Theorem (Morris et al. 2023)

Morris, G.,Tönshoff, Grohe; WL meet VC (2023).


𝖵𝖢𝒢′￼
(ℋ) := max{s ∣ ∃G1, …, Gs in 𝒢′￼ which can be shattered by ℋ}

Equivalence classes induced by ρ(ℋ)



Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .


Which embeddings can be approximated by embeddings in ?


What is the VC dimension of  ?


Which embeddings can be expressed by embeddings in ?

ℋ

ℋ

ℋ

ℋ



Which unary  formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)
I am blue and there exist


 a red vertex somewhere… component1

component2



Which unary  formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

Cannot be reached by neighborhood aggregation

I am blue and there exist

 a red vertex somewhere… component1

component2



Which unary  formulas can MPNNs express?C2

Let  be a unary  formula. Then,  is equivalent to a 
 formula if  and only if   is expressible by the class of  

MPNNs.

φ(x) C2 φ(x)
𝖦𝖢2 φ(x)

Theorem   (Barceló et al. 2020)

∃ξ ∈ MPNN : ∀G ∈ 𝒢, ∀v ∈ VG : (G, v) ⊧ φ ⇔ ξ(G, v) = 1

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of  graph neural networks (2020)

Barceló, Kostylev, Monet, Pérez, Reutter, Silva:  The Expressive Power of  Graph Neural Networks as a Query Language. (2020)




MPNNs+

Every unary  formula  is expressible by the class of  MPNNs+C2 φ(x)
Theorem   (Barceló et al. 2020)

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of  graph neural networks (2020)

Barceló, Kostylev, Monet, Pérez, Reutter, Silva:  The Expressive Power of  Graph Neural Networks as a Query Language. (2020)


Allow for aggregation over all vertices not only edge-guarded

Of  course, there are queries beyond  which MPNNs can express𝖢2



If  a unary query Q is computable by a GNN with rational weights and 
piecewise linear activation functions, then Q is definable in the guarded 
fragment of  FO2 + 𝖢

Descriptive complexity of  GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of  Graph Neural Networks (2023)


Different from 

Two sorted logic, numerical 

predicates etc.


𝖢2

Extends to general GNNs with real weights and more complex activation 
functions  approximate with GNNs as in theorem⇒
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Boolean functions computable by non-uniform 
polynomial-size bounded-depth family of  circuits 

with threshold gates



If  a unary query Q is computable by a GNN with rational weights and 
piecewise linear activation functions, then Q is definable in the guarded 
fragment of  FO2 + 𝖢

Descriptive complexity of  GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of  Graph Neural Networks (2023)


Different from 

Two sorted logic, numerical 

predicates etc.


𝖢2

Extends to general GNNs with real weights and more complex activation 
functions  approximate with GNNs as in theorem⇒

Situates queries expressible by GNNs in (non-uniform) TC0

Boolean functions computable by non-uniform 
polynomial-size bounded-depth family of  circuits 

with threshold gates

Converse holds, with random 
vertex features.
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Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)

Sato et al.: Random features strengthen graph neural networks (2021).

Abboud et al. :The surprising power of  graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)

Ying et al.: Do transformers really perform bad for graph representation (2021)

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)

Zhang et al.: Rethinking the expressive power of  gnns via graph biconnectivity (2023)] 2
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Methods matching  for  require tensors making them inefficient


Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Subgraph GNNs
Bevilacqua et al: Equivariant subgraph aggregation network (2022)

Cotta et al.: Reconstruction for powerful graph representations (2021)

Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022 )

Huang et al.: Boosting the cycle counting power of  graph neural networks with I2-GNNs (2022)

Papp et al.: DropGNN: Random dropouts increase the expressiveness of  graph neural networks. (2021)

Qian et al.: Ordered subgraph aggregation networks. (2022)

You et al.: Identity-aware graph neural networks. (2021)

Zhang and P. Li. Nested graph neural networks (2021)

Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)
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Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning 
method on a derived view.


Analysis of  expressive power (logic, 
hom count,…)

Running graph learning 
method on many views, then 

aggregate. Analysis of  expressive 
power



Todos
Analysis does not always explain experiments. Is a more fine grained analysis 
possible, perhaps taking learning process into account?


Didn’t mention graphons (limits of  graphs): Expressivity?


Does connection with GEL (aggregate query language) allow for more transferal 
of  knowledge from database theory/practice to ML?


If  the underlying graph is the result of  a query, can one develop a factored graph 
learning approach?


Recurrent GNNs are closely related to fixpoint computations. Relationship to 
query language with recursion?


Relational embedding methods? 



Conclusion

The query language/logic point of  view provides a good abstraction 
of  graph learning methods.


Leads to interesting insights in capabilities of  graph learning 
methods.


Great opportunity for database theory and theoretical computer 
science community contribute …


