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So what 1s graph learning?
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Graph learning

Prediction and classification problems on graphs

~Vertex level

T

Graph level +—

—* Subgraph level

.....

iw Edge/link level

ooooooooooooooooooooooooooooooooo

Image: Machine Learning on Graphs, Stanford course Jure Leskovec
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Why learning on graphs?

. W

Graphs are everywhere!
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Regulatory Networks
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Graph learning methods are thus widely applicable

Images: Machine Learning on Graphs, Stanford course Jure Leskovec
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Embedding-based graph learning

g = all graphs Y = output space




Embedding-based graph learning

@;)
5@) Embedding method

o

g = all graphs Y = output space




Embedding-based graph learning

"The world of
classical M L

@;)
zzf : Embedding method g J
e l

g = all graphs Y = output space




What’s new?
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What’s new?

flatten Y = R10

( \

0 1
| ()
¢ g, [
\ 0 0

2

5 \> 1 0 )

[ —> (Oa19090919190919090909190919090909190919190909190) -_->

3

) ——
4

0
0
1
0
1

el | g @] @l

& I G =) I

KRB lDeep neural network[

Support vector machines

| |

N 2
5 ) ; 0) —>
% _> (O,1,0,1,0,190913090909190909191909090319090919170)
| )
4

3

ERliEs N ESN=] I
S @B Gl 4Co o=
ok

)

0
1
1
0

3 i =

=g (€28 ) pey

1
1
5 ) 1 0
0 0 0,
. — (0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0) —>
3
4

permuted adjacency
matrices

Images: flaticon.com, Noun project



http://flaticon.com

What’s new?

flatten Y = R10

( \

0 1

| ()
ey
\ 0 0

1 O

\ 2
5 ) \ /
( [ —> (Oa19090919190919090909190919090909190919190909190) -_->
3

0
0
1
0
1

el | g @] @l

& I G =) I

KRB lDeep neural network[

Support vector machines

| |

N 2
3 ) \ —_—
%/ _> (O,1,0,1,0,190913090909190909191909090717090919170)
| )
4

3

ERliEs N ESN=] I
S @B Gl 4Co o=
ok

)

0
1
1
0

3 i =

=g (€28 ) pey

1
1
5 ) 1 0
0 0 0,
. — (0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0) —>
3
4

permuted adjacency
matrices

@ Ditferent representation = different result =~ =

Images: flaticon.com, Noun project



http://flaticon.com

Invariant embeddings

<= We need embeddings to be graph mvariants

Y

- Isomorphic inputs should give the same result

genericity 1n query languages




Invariant embeddings

<= We need embeddings to be graph invariants

Y

- Isomorphic inputs should give the same result

genericity in query languages

p-vertex embedding |§ Z > (7P >Y):(G,v) —» &G, V)|is invariant if
for all G, all isomorphisms 7, and v € VZ : E(G,V) = E(m(G), m(V))

<= Invariance 1s achieved by composing invariant building blocks to build

embeddings




Graph learning (semi-supervised)

<= (1ven training set  and hypothesis class #Z ot invariant embedding

methods T = {(Gl, Vis V)5 oo (Gp, Vo, ybﬂ)} CIEOEXTVTPXY

= Empirical risk mmmimisation: Find embedding & in # which
minimises empirical loss on training set

A\

N
¢ argmin— ) - loss(§(G,, v)), )
texw €T

<= Solved using backpropagation/gradient descent like optimisation
algorithms




Graph learning (semi-supervised)

A\

N
¢ argmin— ) loss(&(G;, v), )
e €

We know now what graph learning 1s but what are these hypothesis classes?
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Hypothesis classes

k-GNNs
k-FGNNs
kGNNs £ 20
randomMPN N{-L G NN
CayleyNet Simplictal MPNNs
ChebNet 2-1GN GIN PPGN
Walk GNNg 0 = k—GNNs Nested GNNs5s
GATs Id-aware GNN CWN GNN as Kernel
MPNN -+ Dropout GNN  Graphormer
MPNNS5 SGNs Ordered subgraph Networks

% GCN GIN GraphSage GatedGCNg Reconstruction GINNs
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How to compare different classes?

ow to compare such embedding classes theoretically?

H
How to bring order to the chaos?
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How to compare ditlerent classes?

<= How to compare such embedding classes theoretically?

o

- How to bring order to the chaos?

I. See graph embedding methods as

queries 1n some query language

5. lranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




How to compare different classes?

<= How to compare such embedding classes theoreticallyy h
What
. kind of
<= How to bring order to the chaos? language?

I. See graph embedding methods as

queries in some query language

Expressive
power?

5. Iranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




Graph Embedding Language




Graph Embedding Language (GEL)

<= Most methods are specified in terms of linear algebra computations
interleaved with non-linear function applications

<= (rucial component 1s multiplication with adjacency matrix which
corresponds to neighbourhood aggregation

@& Desired language needs function application and aggregation




Graph Embedding Language (GEL)

<= Most methods are specified in terms of linear algebra computations
interleaved with non-linear function applications

<= (rucial component 1s multiplication with adjacency matrix which
corresponds to neighbourhood aggregation

@& Desired language needs function application and aggregation

Let us see first see an example of an embedding class #




Graph Neural Networks 101

<= Non-linear activation function ¢ (RelLU, sign, sigmoid, ...)

= F € R™4 denotes embedding of vertices in graph G

V1
Vo
V3

0.1 31 3 4.03
5 0.03 97 -1
-3 118 =63 0.204

= Weight matrices WY € R*? and WY’ € R**? and bias vector b € R

Fg)) <4— Initial hot-one embedding ot vertex labels

nxd

Matrix form Fg) =0 (F(é_l)W(lt) + A (t_l)W(zt) + B(t)> e |
Aggregation over

Adjacency matrix neighbours

|




GNN 101: Graph embeddmg

= Weight matrix W € R and and bias vector b € I

F.:=0 ZF%)W+b c R1xd

veVg

Aggregation over all

vertices

<= Hypothesis class # consists of €, : G = F, parametrised by weights

= Empirical Risk Minimisation: Find best parameters

WD W WD W Wb b ™) b




Graph Embedding Language (GEL)

GLEL expression
Syntax ¢(x) of dimension d and free variables x = {x, ..., x,}
Higher order embedding
Semantics
cf¢:?—>(‘7é—>t dy

It 15 really just going to be a simple version of a query languages with
ageregates studied 1n database theory and it resembles Datalog®

Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)
Abo Khamis, Ngo, Pichler, Suciu, Wang: Convergence of Datalog over (Pre-) Semiring. (2022)

G. and Reutter: Expressweness and approximation properties of graph neural networks. (2022)




Atomic GEL expressions

Atomic expressions_ LSemantics -
Label: @(x) := Lab;(x;) of dim 1 and free var x; c(G,X;/V) 1= ] th feature of v
1 (v,w) € £,
: X)) = X ' X G, x/v,x;/w) := |
Ldge: @(x;,x) := E(x;, x) of diml, free vars x;, x; Gl /W) { A e 0

]l v=w
0 otherwise

Equality: ¢(x;, x) := 1[x; = x;] of dim 1, free vars x;, x; & (G, /v, x./w) = {




GEL: Function Application

Function application: Syntax

Let ¢,(Xy), ..., p(X;) be GEL expressions of dim d,, ..., d, and free vars x, ..., X,
Let F: R4t %4 5 R%be a function. Then,

¢(X) — F(Cﬂla REE ¢f)

1s again a GEL expression of dim d and free vars x = x; U .- UX,
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GEL: Function Application

Function application: Syntax

Let ¢,(Xy), ..., p(X;) be GEL expressions of dim d,, ..., d, and free vars x, ..., X,
Let F: R4t %4 5 R%be a function. Then,

QD(X) — F(Cﬂla REE ¢f)

1s again a GEL expression of dim d and fee vars ¥ =x; U .- UX,

Semantics

T

£GxIv) = F(£,(G.xi/v)), ....£, (G x,/v,) )€ R

M
l

d,

M
l

Linear algebra
Activation functions
Anything you want...

dy




GEL: Aggregation

Aggregation: Syntax

Let ¢,(x,y) and @,(Xx,y) be GLL expressions ot dim d;, and d, and free vars x,y. Let ©®
be a function mapping bags of vectors in R% to a vector in R?. Then,

P(X) = agg? (9, | @]

1s a GEL expression of dim d and {ree vars x

Semantics

TR — —

E NG, X/V) 1= @({{ 5¢1(G, X/V,y/W) | W E V(‘;y}})

M
d,




GEL: Aggregation

Aggregation: Syntax

Let ¢,(x,y) and @,(Xx,y) be GLL expressions ot dim d;, and d, and free vars x,y. Let ©®
be a function mapping bags of vectors in R% to a vector in R?. Then,

P(X) = agg? (9, | @]

1s a GEL expression of dim d and {ree vars x

Semantics

TR — —

£/G.xiv) = O { £,(G,x/v,yiw) | &,(G.x/v.y/W) # 0w e Vi)

i N ocuard
1




GEL: Aggregation example

¢ = aggm |1y = y] | E(x,y) - E(y,2) - E(x,2) - 1[x # y] - 1[x # 2] - 1[y # 2],

- = shorthand tor product function application

What does this compute?




GEL: Aggregation example

¢ = aggm |1y = y] | E(x,y) - E(y,2) - E(x,2) - 1[x # y] - 1[x # 2] - 1[y # 2],

- = shorthand tor product function application

What does this compute? Iriangle count




GLEL: Aggregation example

@ =aggn 1y =yl | E(x,y) - E(v,2) - E(x,2) - 1x # y] - 1[x # 2] - 1[y # z]]

- = shorthand tor product function application

What does this compute? Iriangle count

Let us see a more elaborate example
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Message Passing Neural Networks

We define ¢p(x)) := 1[x; = x;]
T'hen for r > 0, we get

qo(t)(xl) Upd(t)(qﬂ(t_l)(xl), agg)(?zm [(p(t—l)(xz) | E(prz)])

For readout layer, we get

p = 2gg®[p V0 110x, = x,1] )

"

dummy guard

edge guarded aggregation

T'his encompasses the GNNs 101

Gilmer, Schoenholz, Riley, Vinyals, Dahl.: Neural message passing for quantum chemastry. (2017)




Fragments of GLL

= GEL(Q, ®): k variable tfragment ot GLEL with functions in Q and
ageregations i ©

= GGEL,(Q, ®): 2 vaniable fragment GEL with edge guarded

aggregation only

MPNNSs without readout Ehase!ﬁt in GGEL(Q, ©)
MPNNSs including readout phase fit in GEL,(€, ©)




Fragments of GLL

= GEL(Q, ®): k variable tfragment ot GLEL with functions in Q and
ageregations i ©

= GGEL,(Q, ®): 2 vanable fragment GEL with edge guarded

aggregation only




Fragments of GLL

= GEL(Q, ®): k variable tfragment ot GLEL with functions in Q and
ageregations i ©

= GGEL,(Q, ®): 2 vaniable fragment GEL with edge guarded

aggregation only

k-GNNs
k-FGNNs
k+1-IGNs
k-GNN5s - GELk
Most hypothesis classes o . B GEL,
. CayleyNet Simplicial MPNNs . GEL2
fit in one of those fragments! ChebNer  21GN GIN  PPGN B GGEL,
Walk GNNs 6 — k=GNNs Nested GNNs
GATx Id-aware GNN CWN GNN as Kernel
MPNN+ Dropout GNN Graphormer
MPNNs SGNis Ordered subgraph Networks
G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022) #  GCN GIN GraphSage GatedGCNs Reconstruction GNNs




How to compare different classes?
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ow to compare such embedding classes theoretically?
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<= How to bring order to the chaos?

. See graph embedding methods as

queries 1n some query language

Expressive
power?

3. lTranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




How to compare different classes?
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ow to compare such embedding classes theoreticallyy

H
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<= How to bring order to the chaos? language?

I. See graph embedding methods as

queries in some query language

Expressive
power?

3. lTranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




How to compare different classes?
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ow to compare such embedding classes theoretically,

H
<= How to bring order to the chaos?

I. See graph embedding methods as

queries in some query language

Expressive
power?

3. lTranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




How to compare different classes?
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ow to compare such embedding classes theoretically,

H
<= How to bring order to the chaos?

I. See graph embedding methods as

queries in some query language

Expressive
power?

3. lTranster 2. Analyse expressive
understanding back to power of query language
oraph learning world




Expressive power




Distinguishing power

Y

= Which mputs can be separated/distinguished by embeddings in #Z°?

<= (aptured by the following equivalence relation on & X 77:
p(Z) = (G, V,H,w) | Ve e X : (G, V) =(H, W)}




Distinguishing power

Y

= Which mputs can be separated/distinguished by embeddings in #Z°?

<= (aptured by the following equivalence relation on & X 77:
p(Z) = (G, V,H,w) | Ve e X : (G, V) =(H, W)}

= Strongest power: # powerful enough to detect non-1somorphic
oraphs: p(#') only contains isomorphic pairs

= Weakest power: #Z cannot differentiate any two graphs: p(#°)
contains all pairs of graphs.




Distinguishing power
= Allows for comparing diftferent classes of embeddings methods

p(methods;) C p(methods»)

methods; 1s more powertul than methods,
methods, 1s bounded by methods; in power

p(methods;) = p(methods,)

Both methods are as powertul

<= Allows for comparing embedding methods with algorithms, logic, ...

on graphs




Expressive power in M L. community

<= locus has been on characterising the distinguishing power of classes #

of embedding methods.

<= Hopetully, characterisations ot p(#°) shed light on what graph properties
a learning method 1n #can detect/use.




Expressive power in M L. community

<= locus has been on characterising the distinguishing power of classes #

of embedding methods.

<= Hopetully, characterisations ot p(#°) shed light on what graph properties
a learning method 1n #can detect/use.

We will obtain logic-based characterisations




Logic
= First-order logic with k variables and counting quantifiers (C,).

k=0 o) = 35y (E(x, ¥) A 322x (E(y,x) A La(x)))
e

binary edge predicate unary label predicate

<+ (51ven graph G, vertex v € VG satisfies @: It has at most 5 neighbours
each with at least two neighbours labeled *a”

o

> Guarded fragment GC, of C,

only existential quantification for the form ="' y(E(x, y) A ¢(y))




Expressive power of GEL

= T'he tollowing results tfollow from standard analysis of aggregate query
languages: all real number arithmetic can be eliminated.

Theorem (Xu etal. 2019, Morris et al. 2019, G. and Reutter 2022)
p(GGEL(Q, ©)) = p(G(C,)

Theorem (G. and Reutter 2022)
p(GELK(L, ®)) = p(C))

<= Lower bounds:  contains linear combinations, concatenation, product (or
activation functions) and ® contains summation

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019
Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)

Cai, Furer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)

G., Reutter: Expressweness and approximation properties of graph neural networks. (2022)

M. Grohe: The logic of graph neural networks. (2021)




Consequences

= If embedding method M can be cast in GEL (€, ®) then p(C,) C p(M)
<= It embedding method M can also encode formulas in C, then p(C,) 2 p(M)
k-GNNs
k-FGNNs
k+1-IGNs
k-LGNN = GEL
- S
CayleyNet Simplicial MPNNs : ggiz
ChebNet 2-IGN PPGN B GGEL
Walk GNNs 6 — k—GNNs Nested GNNs
Xu, Hu, Leskovec, Jegelka: How powerfil are graph neural networks? (2019) GATs Id-aware GNN CWN GNNas Kernel
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Consequences

o

- It embedding method M can be cast in GEL (€, ®) then p(C,) C p(M)

<= It embedding method M can also encode formulas in C, then p(C,) 2 p(M)

k-GNNs
(4 * 9
Automatic” upper bounds on k- FGNNs
alstinguishing power k+1-IGNs
k-LGNN - GEL,
Needs case-by-case analyse to show! o B GrL,
“hardness”™ S bl N S B GElL,
Walk GNNs 6 — k=GNNs Nested GNNs
Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019) GATs Id-aware GNN CWN GNN as Kernel
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural:
Higher-order graph neural networks. (2019 MPNN+ Dropout GNN Graphormer
Maron, Ben-Hamu, Serviansky, Lipman: Provably powerful graph networks. (2019) o h Net I
Maron, Fetaya, Segol, Lipman: Invariant and equivariant graph networks. (2019) MPNNs SGNs rdered subgrap CIWOIKS
G. The expressive power of kth-order invariant graph networks. (2019) (:IN R tructi GNN
G.,Reutter: Expressweness and approxumation properties of graph neural networks. (2022) % GCN GraphSage GatedGCUNs cconstructon S




Theorem (Morris et al. 2019)
p(GNNI101) = p(Cy)

embeds G differently from H?

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




Theorem (Morris et al. 2019)
p(GNNI101) = p(Cy)

embeds G differently from H?

NO!

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




Theorem (Morris et al. 2019)
p(GNN101) = p(Cy)

A -
SN

G

GNN 101s, MPNNs are pretty weak

Can we train a GNN 101 which (> and H are known to be
embeds G difterently from H? indistinguishable by C,
(pebble game argument)

NO!
= (G, H) € p(C,) = p(GNN101)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




GNN 101

Theorem (Morris et al. 2019)

p(GNN10T) = p(Gy)

Can we tramn a GNNI101 such
that P embeds differently from NP?

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




GNN 101

Theorem (Morris et al. 2019)

p(GNN10T) = p(Gy)

Can we tramn a GNNI101 such
that P embeds differently from NP?

YES!

orris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




Theorem (Morris et al. 2019)
p(GNNI101) = p(Cy)

single degree one node

Can we train a GNN101 such P satisfies 3='x3='y E(x, y) but NP does not
that P embeds differently from NP? U

(P,NP) & p(C,) = (P,NP) & p(GNNI101)

YES!

orris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weusfeiler and Leman go neural: Higher-order graph neural networks. (2019




Beautitul connections

Theorem (Dell et al. 2019, Dvorak 2010)
(G,H) € p(C,) Important class of
if and only if MPNNSs can only detect

hom(7, G) = hom(T, H) for all trees T tree-based information

Theorem (Dell et al. 2019, Dvorak 2010)
(Ga H) & p(cp+1)

if and only 1f
hom(P, G) = hom(P, H) tor all graphs P of treewndth p

<= Also connections to the combinatorial graph algorithms color refiinement
and higher-dimensional Weisteiler-LLeman graph 1somorphism tests.

Z.. Dvorak: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovdsz meets Weisfeiler and Leman. (2018)

Cai, Furer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)




Expressive power

o

= Which mputs can be separated/distinguished by embeddings in #.
\%Y

NS
Ce®

hich embeddings can be approximated by embeddings in #°?

# = class of embedding methods




Approximation properties

<= Equip the set of graphs & with a topology and assume that #
consists of continuous graph embeddings from € to |

= Let € C & be a compact set ot graphs.

Azizian, Lelarge: Characterizing the expressiwe power of wnvariant and equivariant graph neural networks (2021)
G., Reutter: Expressweness and approximation properties of graph neural networks (2022)




Approximation properties

<= Equip the set of graphs & with a topology and assume that #
consists of continuous graph embeddings from & to R.

= Let € C & be a compact set ot graphs. |
Stone-Weierstrass

Theorem (Azizian & Lelarce 2021. G. and Reutter 2022)
It # 1s closed under inear combinations and
product, then # can approximate any continuous

function E : € — R satistying
p(Z) € p({1E}).

= (an be generalised to embeddings with output space |

Azizian, Lelarge: Characterizing the expressiwe power of wnvariant and equivariant graph neural networks (2021)
G., Reutter: Expressweness and approximation properties of graph neural networks (2022)




MPNNs: Approximation

Theorem
On compact set ot graphs, MPNNs can approximate any continuous graph

embedding E : € — R satistying p(C,) C p({E})

Cannot approximate graph

functions based on
?3 | 3\ (G, H) € p(MPNN) = _ connected components
| e

G - 3-chques

<= Intricate relation between distinguishing power and approximation properties

Azizian, Lelarge: Characterizing the expressiwe power of wnvariant and equivariant graph neural networks (2021)
G., Reutter: Expressweness and approximation properties of graph neural networks (2022)




Expressive power

<= Which mputs can be separated/distinguished by embeddings in #Z.

o

>

hich embeddings can be approximated by embeddings in #°?

W
<+ What 1s the VC dimension of #?

# = class of embedding methods




V(C dimension

= A set ot graphs Gy, ..., G, can be shattered by # 1t for any boolean
vector 7 € {0,1}°, there1s a £, € #Z such that £(G,) =t foralli=1,...,s

o

> We define the VC dimension of # on €' C &€ as

VCe(A') := max{s | 4G, ..., G, in &' which can be shattered by # '}

Theorem (Morris et al. 2023)

Equivalence classes induced by p(#)

orris, G., Tonshoft, Grohe; WL meet VC (2023).




Expressive power

Y

Qo

hich mmputs can be separated/distinguished by embeddings in #Z.

o

<

hich embeddings can be approximated by embeddings in #°?

o

\%Y
\%Y

> What 1s the VG dimension ot #7?
\Y

N

hich embeddings can be expressed by embeddings in #°?

# = class of embedding methods




Which unary G, formulas can MPNNs express?

<= Not all: ¢p(x) := Lb(.x) A dyL.(y)

I am blue and there exist e

a red vertex somewhere...
component,

component,




Which unary G, formulas can MPNNs express?

<+ Not all: ¢p(x) := Lb(zc) A JyL.(y)

I am blue and there exist e
a red vertex somewhere...

component,

component,

Y}
-

Cannot be reached by neighborhood aggregation




Which unary G, formulas can MPNNs express?

Theorem (Barcel6 et al. 2020)
Let ¢(x) be a unary G, formula. 'Then, ¢(x) 1s equivalent to a

GC, formula if and only if p(x) 1s expressible by the class of
MPNN:E.

3¢ e MPNN : VG € &.Vv e V. : (G,v) E ¢ < &G, v) = 1

Pérez, Reutter, Silva: The logical expressieness of graph neural networks (2020)
et, Pérez, Reutter, Silva: 7he Expressie Power of Graph Neural Networks as a Query Language. (2020)




MPNNs;l-

Allow for aggregation over all vertices not only edge-guarded

Theorem (Barcel6 et al. 2020)

Every unary C, formula ¢(x) 1s expressible by the class of MPNNs+

Of course, there are queries beyond C, which MPNNs can express

Barcelo, Kostylev, Monet, Pérez, Reutter, Silva: 7 e logical expressweness of graph neural networks (2020)
Barcelo, Kostylev, Monet, Pérez, Reutter, Silva: 7he Expresswe Power of Graph Neural Networks as a Query Language. (2020)




Descriptive complexity of GNNs

'’heorem (Grohe 2023)
It a unary query Q 1s computable by a GNN with rational weights and

piecewise linear activation functions, then Q) 1s definable 1n the guarded
fragment of FO, +C

Difterent from C,
Iwo sorted logic, numerical
predicates etc.

<= Extends to general GNNs with real weights and more complex activation
functions = approximate with GNNs as in theorem

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023




Descriptive CompleX1ty of GNNs

'’heorem (Grohe 2023)
It a unary query Q 1s computable by a GNN with rational weights and

piecewise linear activation functions, then Q) 1s definable 1n the guarded
fragment of FO, +C

Difterent from C,
Iwo sorted logic, numerical
predicates etc.

<= Extends to general GNNs with real weights and more complex activation
functions = approximate with GNNs as in theorem

= Situates queries expressible by GNNs in (non-uniform) TC

Boolean functions computable by non-uniform
polynomial-size bounded-depth tamily ot circuats
with threshold gates

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023




Descriptive CompleX1ty of GNNs

'’heorem (Grohe 2023)
It a unary query Q 1s computable by a GNN with rational weights and

piecewise linear activation functions, then Q) 1s definable 1n the guarded
fragment of FO, +C

Difterent from C,
Iwo sorted logic, numerical
predicates etc.

<= Extends to general GNNs with real weights and more complex activation
functions = approximate with GNNs as in theorem

= Situates queries expressible by GNNs in (non-uniform) TC

= Converse holds, with random Boolean functions computable by non-uniform
vertex features. polynomial-size bounded-depth family of circuits

with threshold gates

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023




How to compare different classes?

o

4

ow to compare such embedding classes theoretically?

H
<= How to bring order to the chaos?

I. See graph embedding methods 2

queries 1 some query lang Distinguishability,
approximation, generalisation,
uniform and non-uniform

EXPressIveness

3. lTranster 2. Analyse expressive
understanding back to power of query language
eraph learning world




How to compare different classes?

o

4

ow to compare such embedding classes theoretically,

H
<= How to bring order to the chaos?

I. See graph embedding methods 2

queries 1 some query lang Distinguishability,
approximation, generalisation,
uniform and non-uniform

EXPressIveness

3. lTranster 2. Analyse expressive
understanding back to power of query language
eraph learning world
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1lodos

- MPNNSs: Efficient, most widely used but not expressive (C,)
M

o

o

g

thods matching C, for k > 2 require tensors making them inethcient

o

e
- Ongoing efforts to boost power but preserve efhiciency




1lodos

PNNs: Ethcient, most widely used but not expressive (C,)

/
\ X4

M
M

/
0‘0

ethods matching C, for k > 2 require tensors making them inetficient

/
0‘0

Ongoing efforts to boost power but preserve ethciency

Feature augmentation

Precompute hom/iso counts

Bouritsas et al.: Improving graph neural network expresswity via subgraph isomorphism counting (2020)
Barcel6 et al.: Graph neural networks with local graph parameters. (2021)

Random features
Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)

Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. : The surprising power of graph neural networks with random node initialization. (2021)

Spectral/ Global properties

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)

Ying et al.: Do transformers really perform bad for graph representation (2021)

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] :
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1lodos

= MPNNs: Ethcient, most widely used but not expressive (C,)
<= Methods matching C, for k£ > 2 require tensors making them 1netficient
<= Ongoing eflorts to boost power but preserve ethiciency

Feature augmentation ___Subgraph GNNs

Precompute hom/iso counts

Bouritsas et al.: Improving graph neural network expresswity vi
Barcel6 et al.: Graph neural networks with local 91gkbet

' . . Bevilacqua et al: Equwaniant subgraph aggregation network (2022)

gaph wsomorphism counting (2020) Cotta et al.: Reconstruction for powerful graph representations (2021)

Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022 )
Huang et al.: Boosting the cycle counting power of graph neural networks with 12-GNNs (2022)

Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)

You et al.: Identity-aware graph neural networks. (2021)

Zhang and P. Li. Nested graph neural networks (2021)

Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Random featureg

Dasoulas et al.: Goloring grg

Running graph learning
AR method on a derived view.
eIl Analysis of expressive power (logic,
Kreuzer et al.: Rethinking or8 hom count,. . >

Ying et al.: Do transformers really
Lim et al.: Sion and Basis Invariant NetiD®
Zhang et al.: Rethinking the expressive power of gnits om
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Feature augmentation

Precompute hom/iso counts

Bouritsas et al.: Improving graph neural network expresswity vi
Barcel6 et al.: Graph neural networks with local 91gkbet

caph 1somorphism counting (2020)

Random features

Dasoulas et al.: Goloring grg

Running graph learning
i Tl method on a derived view.
eIl Analysis of expressive power (logic,
Kreuzer et al.: Rethinking or8 hom count,. . >

Ying et al.: Do transformers really
Lim et al.: Sion and Basis Invariant NetiD®
Zhang et al.: Rethinking the expressive power of gnis on

PNNs: Ethcient, most widely used but not expressive (C,)

ethods matching C, for k > 2 require tensors making them inetficient

Ongoing efforts to boost power but preserve ethciency

Bevilacqua et al: Equwanant subgraph aggregation network
Cotta et al.: Reconstruction for powerful graph representation
Bevilacqua et al.: Understanding and extending subgraph G.
Huang et al.: Boosting the cycle counting porwerabs
Papp et al.: DropGNN: Random drofag
Qian et al.: Ordered subgraph g
You et al.: Identity-aware
Zhang and P. Li. Nes
Zhao et al.: From sta

rethanking their symmetries (2022 )
e 000 0)

Running graph learning
method on many views, then
agoregate. Analysis of expressive

power




1lodos

= Analysis does not always explain experiments. Is a more fine grained analysis
possible, perhaps taking learning process into account?

<= Didn’t mention graphons (imits of graphs): Expressivity?

= Does connection with GLEL (aggregate query language) allow for more transteral
of knowledge from database theory/practice to ML.?

= [t the underlying graph is the result of a query, can one develop a tactored graph
learning approach?

<= Recurrent GNNs are closely related to fixpoint computations. Relationship to
query language with recursion?

<+ Relational embedding methods?




Conclusion

= T'he query language/logic point of view provides a good abstraction
of graph learning methods.

<= Leads to interesting insights in capabilities of graph learning
methods.

<= (reat opportunity for database theory and theoretical computer
science community contribute ...




