
The power of graph learning
Floris Geerts (University of Antwerp, Belgium)

Query
Languages

CircuitsAI

Logic

Logic and Algorithms in Database Theory and AI

Query
Languages

CircuitsAI

Logic

Graph
Learning

Logic and Algorithms in Database Theory and AI

Query
Languages

CircuitsAI

Logic

Graph
Learning

Logic and Algorithms in Database Theory and AI

So what is graph learning?

Graph learning

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

Image: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph level

Vertex level

Subgraph level

Edge/link level

Prediction and classification problems on graphs

Examples
Vertex classification: categorise online user/items,
location amino acids (protein folding, alpha fold)

Link prediction: knowledge graph completion,
recommender systems, drug side effect discovery

Graph classification: molecule property, drug
discovery

Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure
based solely on its amino acid sequence

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Image credit: DeepMind

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

� Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

� Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”

Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Many patients take multiple drugs to treat
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict

adverse side effects

,

Prescribed
drugs

Drug
side effect

30%
prob.

65%
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

� Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Graphs are everywhere!

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph learning methods are thus widely applicable

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Graphs are everywhere!

Images: Machine Learning on Graphs, Stanford course Jure Leskovec

Graph learning methods are thus widely applicable

How is learning typical done?

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

ℝd

…

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

Embedding-based graph learning

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

The world of
classical ML

What’s new?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

Images: flaticon.com, Noun project

flatten

http://flaticon.com

What’s new?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

permuted adjacency
matrices

0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
2

3
4

5

1
2

3
4

5

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

Images: flaticon.com, Noun project

flatten

http://flaticon.com

What’s new?
0 1 0 0 1
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
1 0 0 1 0

(0,1,0,0,1,1,0,1,0,0,0,1,0,1,0,0,0,1,0,1,1,0,0,1,0)

Deep neural network

Support vector machines

…

𝒢 𝕐 = ℝ101
2

3
4

5

:-(Different representation different result⇒
permuted adjacency

matrices

0 1 0 1 0
1 0 1 0 0
0 1 0 0 1
1 0 0 0 1
0 0 1 1 0

0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0
0 1 1 0 0

1
2

3
4

5

1
2

3
4

5

(0,1,0,1,0,1,0,1,0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0)

(0,0,1,1,0,0,0,0,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0)

Images: flaticon.com, Noun project

flatten

http://flaticon.com

Invariant embeddings

G ∈ 𝒢

We need embeddings to be graph invariants

Isomorphic inputs should give the same result
genericity in query languages

Invariant embeddings

G ∈ 𝒢

We need embeddings to be graph invariants

Isomorphic inputs should give the same result
genericity in query languages

for all G, all isomorphisms π, and v ∈ Vp
G : ξ(G, v) = ξ(π(G), π(v))

ξ : 𝒢 → (𝒱p → 𝕐) : (G, v) ↦ ξ(G, v)-vertex embeddingp is invariant if

Invariance is achieved by composing invariant building blocks to build
embeddings

Graph learning (semi-supervised)
Given training set and hypothesis class of invariant embedding
methods

Empirical risk minimisation: Find embedding in which
minimises empirical loss on training set :

𝒯 ℋ

ξ ℋ
𝒯

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Solved using backpropagation/gradient descent like optimisation
algorithms

Graph learning (semi-supervised)
̂ξ : arg min

ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

We know now what graph learning is but what are these hypothesis classes?

Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

Hypothesis classes?
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN
Simplicial MPNNs

k-GNNs
k-FGNNs

k-LGNNs

SGNs
GatedGCNs

Walk GNNs

Reconstruction GNNs
Ordered subgraph Networks

GNN as Kernel
Nested GNNs

Hypothesis classes

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

What
kind of

language?

Expressive
power?

Graph Embedding Language

Graph Embedding Language (GEL)

Most methods are specified in terms of linear algebra computations
interleaved with non-linear function applications

Crucial component is multiplication with adjacency matrix which
corresponds to neighbourhood aggregation

Desired language needs function application and aggregation

Graph Embedding Language (GEL)

Most methods are specified in terms of linear algebra computations
interleaved with non-linear function applications

Crucial component is multiplication with adjacency matrix which
corresponds to neighbourhood aggregation

Desired language needs function application and aggregation

Let us see first see an example of an embedding class ℋ

Graph Neural Networks 101
Non-linear activation function (ReLU, sign, sigmoid, …)

 denotes embedding of vertices in graph G

Weight matrices and and bias vector

σ

F(t)
G ∈ ℝn×d

W(t)
1 ∈ ℝd×d W(t)

2 ∈ ℝd×d b ∈ ℝ1×d

F(t)
G := σ (F(t−1)

G W(t)
1 + AGF(t−1)

G W(t)
2 + B(t))

Initial hot-one embedding of vertex labels

Aggregation over
neighbours

Matrix form

F(0)
G

0.1 31 8 4.03
5 0.03 9.7 −1

−3 118 −63 0.204

v1v2v3

Adjacency matrix

∈ ℝn×d

GNN 101: Graph embedding
Weight matrix and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

Aggregation over all
vertices

FG := σ ∑
v∈VG

F(L)
G W + b ∈ ℝ1×d

Hypothesis class consists of parametrised by weights

Empirical Risk Minimisation: Find best parameters

ℋ ξω : G ↦ FG

W(1)
1 , …, W(L)

1 , W(1)
2 . …, W((L)

2 , W, b(1), …, b(L), b

Graph Embedding Language (GEL)

ξφ : 𝒢 → (𝒱ℓ → ℝd)

 of dimension and free variables φ(x) d x = {x1, …, xℓ}

GEL expression

Higher order embedding

Syntax

Semantics

It is really just going to be a simple version of a query languages with
aggregates studied in database theory and it resembles Datalog∘

Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)
Abo Khamis, Ngo, Pichler, Suciu, Wang: Convergence of Datalog over (Pre-) Semiring.. (2022)
G. and Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

ξφ(G, xi/v, xj /w) := {1 (v, w) ∈ EG

0 otherwise

ξφ(G, xi/v) := j th feature of v

ξφ(G, xi/v, xj /w) := {1 v = w
0 otherwise

SemanticsAtomic expressions

Label: of dim 1 and free var

Edge: of dim1, free vars

Equality: of dim 1, free vars

xi

xi, xj

xi, xj

φ(xi, xj) := E(xi, xj)

φ(xi) := Labj(xi)

φ(xi, xj) := 1[xi = xj]

Atomic GEL expressions

Let be GEL expressions of dim and free vars
Let be a function. Then,

is again a GEL expression of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application

Let be GEL expressions of dim and free vars
Let be a function. Then,

is again a GEL expression of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

GEL: Function Application

Semantics

ξφ(G, x/v) := F(ξφ1
(G, x1/v1), …, ξφℓ

(G, xp/vp)) Linear algebra
Activation functions

Anything you want…
∈ ℝd

∈ ∈
ℝd1 ℝdℓ

§
Let and be GEL expressions of dim and and free vars Let
be a function mapping bags of vectors in to a vector in . Then,

 is a GEL expression of dim and free vars

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

w ∈ V|y|
G

§
Let and be GEL expressions of dim and and free vars Let
be a function mapping bags of vectors in to a vector in . Then,

 is a GEL expression of dim and free vars

φ1(x, y) φ2(x, y) d1 d2 x, y . Θ
ℝd1 ℝd

d x

GEL: Aggregation

φ(x) = 𝖺𝗀𝗀Θ
y [φ1 ∣ φ2]

Aggregation: Syntax

ξφ(G, x/v) := Θ({{ξφ1
(G, x/v, y/w) ∣ }})

Semantics

∈

ℝd1

w ∈ V|y|
G

guard
ξφ2

(G, x/v, y/w) ≠ 0

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute?

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute? Triangle count

GEL: Aggregation example

φ = 𝖺𝗀𝗀𝗌𝗎𝗆
x,y,z[1[y = y] ∣ E(x, y) ⋅ E(y, z) ⋅ E(x, z) ⋅ 1[x ≠ y] ⋅ 1[x ≠ z] ⋅ 1[y ≠ z]]

 = shorthand for product function application ⋅

What does this compute? Triangle count

Let us see a more elaborate example

Message Passing Neural Networks
We define
Then for , we get

φ(0)(x1) := 1[x1 = x1]
t > 0

φ(t)(x1) := 𝖴𝗉𝖽(t)(φ(t−1)(x1), 𝖺𝗀𝗀Θ(t)

x2
[φ(t−1)(x2) |E(x1, x2)])

For readout layer, we get

φ := 𝖺𝗀𝗀Θ
x1

[φ(L)(x1) |1[x1 = x1]])

Gilmer, Schoenholz, Riley, Vinyals, Dahl.: Neural message passing for quantum chemistry. (2017)

edge guarded aggregation

This encompasses the GNNs 101

dummy guard

MPNNs including readout phase fit in GEL2(Ω, Θ)

Fragments of GEL
GEL : k variable fragment of GEL with functions in and
aggregations in

GGEL : 2 variable fragment GEL with edge guarded
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

MPNNs without readout phase fit in GGEL(Ω, Θ)

Fragments of GEL
GEL : k variable fragment of GEL with functions in and
aggregations in

GGEL : 2 variable fragment GEL with edge guarded
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

Fragments of GEL
GEL : k variable fragment of GEL with functions in and
aggregations in

GGEL : 2 variable fragment GEL with edge guarded
aggregation only

k(Ω, Θ) Ω
Θ

2(Ω, Θ)

ℋ

2-IGN

Graphormer

PPGN

CWN

GINChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-GNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

Most hypothesis classes
 fit in one of those fragments! GGEL2

GEL2

GEL3

GELk

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

Expressive
power?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

Expressive
power?

Which
language?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

GEL
GGEL

k

2

Expressive
power?

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

GEL
GGEL

k

2

Expressive
power?

Expressive power

Distinguishing power
Which inputs can be separated/distinguished by embeddings in ?

 Captured by the following equivalence relation on :

ℋ

𝒢 × 𝒱p

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

Distinguishing power
Which inputs can be separated/distinguished by embeddings in ?

 Captured by the following equivalence relation on :

ℋ

𝒢 × 𝒱p

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

Strongest power: powerful enough to detect non-isomorphic
graphs: only contains isomorphic pairs

Weakest power: cannot differentiate any two graphs:
contains all pairs of graphs.

ℋ
ρ(ℋ)

ℋ ρ(ℋ)

Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

methods is more powerful than methods
 methods is bounded by methods in power

1 2

2 1

ρ(methods1) = ρ(methods2)

Both methods are as powerful

Allows for comparing different classes of embeddings methods

Allows for comparing embedding methods with algorithms, logic, …
on graphs

Expressive power in ML community

Focus has been on characterising the distinguishing power of classes
of embedding methods.

Hopefully, characterisations of shed light on what graph properties
a learning method in can detect/use.

ℋ

ρ(ℋ)
ℋ

Expressive power in ML community

Focus has been on characterising the distinguishing power of classes
of embedding methods.

Hopefully, characterisations of shed light on what graph properties
a learning method in can detect/use.

ℋ

ρ(ℋ)
ℋ

We will obtain logic-based characterisations

Logic
First-order logic with k variables and counting quantifiers ().Ck

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))
unary label predicatebinary edge predicate

Given graph , vertex satisfies :G v ∈ VG φ It has at most 5 neighbours
each with at least two neighbours labeled “a”

k=2

Guarded fragment of

 only existential quantification for the form

𝖦𝖢2 𝖢2

∃≥ny(E(x, y) ∧ φ(y))

Expressive power of GEL

ρ(GELk(Ω, Θ)) = ρ(𝖢k)
Theorem (G. and Reutter 2022)

ρ(GGEL(Ω, Θ)) = ρ(GC2)
Theorem (Xu et al. 2019, Morris et al. 2019, G. and Reutter 2022)

Lower bounds: contains linear combinations, concatenation, product (or
activation functions) and contains summation

Ω
Θ

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019
Hella, Libkin, Nurmonen, Wong: Logics with Aggregates. (2001)
Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
G., Reutter: Expressiveness and approximation properties of graph neural networks. (2022)
M. Grohe: The logic of graph neural networks. (2021)

The following results follow from standard analysis of aggregate query
languages: all real number arithmetic can be eliminated.

Consequences
If embedding method M can be cast in GEL then

If embedding method M can also encode formulas in then

k(Ω, Θ) ρ(𝖢k) ⊆ ρ(M)

𝖢k ρ(𝖢k) ⊇ ρ(M)

ℋ

2-IGN

Graphormer

PPGN

CWN

ChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

GGEL
GEL2

GEL3

GELk

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural:
Higher-order graph neural networks. (2019
Maron, Ben-Hamu, Serviansky, Lipman: Provably powerful graph networks. (2019)
Maron, Fetaya, Segol, Lipman: Invariant and equivariant graph networks. (2019)
G. The expressive power of kth-order invariant graph networks. (2019)
G.,Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

Consequences
If embedding method M can be cast in GEL then

If embedding method M can also encode formulas in then

k(Ω, Θ) ρ(𝖢k) ⊆ ρ(M)

𝖢k ρ(𝖢k) ⊇ ρ(M)

ℋ

2-IGN

Graphormer

PPGN

CWN

ChebNet

Dropout GNN

CayleyNet

Id-aware GNNGATs

GraphSage

k+1-IGNs

GNNsδ − k−

k-GNNs

MPNNs
MPNN+

GINGCN

randomMPNN

Simplicial MPNNs

k-FGNNs

k-LGNNs

SGNs

GatedGCNs

Walk GNNs

Reconstruction GNNs

Ordered subgraph Networks

GNN as Kernel
Nested GNNs

GGEL
GEL2

GEL3

GELk

“Automatic” upper bounds on
distinguishing power.
 Needs case-by-case analyse to show
“hardness”

Xu, Hu, Leskovec, Jegelka: How powerful are graph neural networks? (2019)
Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural:
Higher-order graph neural networks. (2019
Maron, Ben-Hamu, Serviansky, Lipman: Provably powerful graph networks. (2019)
Maron, Fetaya, Segol, Lipman: Invariant and equivariant graph networks. (2019)
G. The expressive power of kth-order invariant graph networks. (2019)
G.,Reutter: Expressiveness and approximation properties of graph neural networks. (2022)

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

G H

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

NO!

G H

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN 101 which
 embeds G differently from H?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

NO!

G H

G and H are known to be
indistinguishable by

(pebble game argument)
𝖢2

⇒ (G, H) ∈ ρ(𝖢2) = ρ(GNN101)

GNN 101s, MPNNs are pretty weak

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

YES!

GNN 101

Can we train a GNN101 such
that P embeds differently from NP?

ρ(GNN101) = ρ(C2)
Theorem (Morris et al. 2019)

Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019

YES!

P satisfies but NP does not ∃=1x∃=1y E(x, y)

⇒

(P, NP) ∉ ρ(𝖢2) ⇒ (P, NP) ∉ ρ(GNN101)

single degree one node

if and only if

 for all trees

(G, H) ∈ ρ(𝖢2)

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

Beautiful connections

Also connections to the combinatorial graph algorithms color refinement
and higher-dimensional Weisfeiler-Leman graph isomorphism tests.

Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms. (2010)
Dell, Grohe, Rattan: Lovász meets Weisfeiler and Leman. (2018)

if and only if

 for all graphs P of treewidth p

(G, H) ∈ ρ(𝖢p+1)

𝗁𝗈𝗆(P, G) = 𝗁𝗈𝗆(P, H)

Theorem (Dell et al. 2019, Dvorák 2010)

Cai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. (1992)
M. Grohe: The logic of graph neural networks. (2021)

Important class of
MPNNs can only detect
tree-based information

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

ℋ

ℋ

Approximation properties
Equip the set of graphs with a topology and assume that
consists of continuous graph embeddings from to .

Let be a compact set of graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Approximation properties
Equip the set of graphs with a topology and assume that
consists of continuous graph embeddings from to .

Let be a compact set of graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

 If is closed under linear combinations and
product, then can approximate any continuous

function satisfying

ℋ
ℋ

Ξ : 𝒞 → ℝ
ρ(ℋ) ⊆ ρ({Ξ}) .

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Can be generalised to embeddings with output space ℝd

Stone-Weierstrass

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

MPNNs: Approximation
On compact set of graphs, MPNNs can approximate any continuous graph
embedding satisfying Ξ : 𝒞 → ℝ ρ(𝖢2) ⊆ ρ({Ξ})

Theorem

Intricate relation between distinguishing power and approximation properties

G H
(G, H) ∈ ρ(MPNN) ⇒

Cannot approximate graph
functions based on
- connected components
- 3-cliques
-

Azizian, Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G., Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

What is the VC dimension of ?

ℋ

ℋ

ℋ

VC dimension
A set of graphs can be shattered by if for any boolean
vector , there is a such that for all

We define the VC dimension of on as

G1, …, Gs ℋ
τ ∈ {0,1}s ξτ ∈ ℋ ξτ(Gi) = τi i = 1,…, s

ℋ 𝒢′ ⊆ 𝒢

𝖵𝖢𝒢′
(ℋ) ≤ |𝒢′ /ρ(ℋ) |

Theorem (Morris et al. 2023)

Morris, G.,Tönshoff, Grohe; WL meet VC (2023).

𝖵𝖢𝒢′
(ℋ) := max{s ∣ ∃G1, …, Gs in 𝒢′ which can be shattered by ℋ}

Equivalence classes induced by ρ(ℋ)

Expressive power

ℋ = class of embedding methods

Which inputs can be separated/distinguished by embeddings in .

Which embeddings can be approximated by embeddings in ?

What is the VC dimension of ?

Which embeddings can be expressed by embeddings in ?

ℋ

ℋ

ℋ

ℋ

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)
I am blue and there exist

 a red vertex somewhere… component1

component2

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

Cannot be reached by neighborhood aggregation

I am blue and there exist
 a red vertex somewhere… component1

component2

Which unary formulas can MPNNs express?C2

Let be a unary formula. Then, is equivalent to a
 formula if and only if is expressible by the class of

MPNNs.

φ(x) C2 φ(x)
𝖦𝖢2 φ(x)

Theorem (Barceló et al. 2020)

∃ξ ∈ MPNN : ∀G ∈ 𝒢, ∀v ∈ VG : (G, v) ⊧ φ ⇔ ξ(G, v) = 1

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of graph neural networks (2020)
Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The Expressive Power of Graph Neural Networks as a Query Language. (2020)

MPNNs+

Every unary formula is expressible by the class of MPNNs+C2 φ(x)
Theorem (Barceló et al. 2020)

Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The logical expressiveness of graph neural networks (2020)
Barceló, Kostylev, Monet, Pérez, Reutter, Silva: The Expressive Power of Graph Neural Networks as a Query Language. (2020)

Allow for aggregation over all vertices not only edge-guarded

Of course, there are queries beyond which MPNNs can express𝖢2

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

Situates queries expressible by GNNs in (non-uniform) TC0

Boolean functions computable by non-uniform
polynomial-size bounded-depth family of circuits

with threshold gates

If a unary query Q is computable by a GNN with rational weights and
piecewise linear activation functions, then Q is definable in the guarded
fragment of FO2 + 𝖢

Descriptive complexity of GNNs
Theorem (Grohe 2023)

M. Grohe. The Descriptive Complexity of Graph Neural Networks (2023)

Different from
Two sorted logic, numerical

predicates etc.

𝖢2

Extends to general GNNs with real weights and more complex activation
functions approximate with GNNs as in theorem⇒

Situates queries expressible by GNNs in (non-uniform) TC0

Boolean functions computable by non-uniform
polynomial-size bounded-depth family of circuits

with threshold gates

Converse holds, with random
vertex features.

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

Distinguishability,
approximation, generalisation,

uniform and non-uniform
expressiveness

How to compare different classes?
How to compare such embedding classes theoretically?

How to bring order to the chaos?

1. See graph embedding methods as
queries in some query language

2. Analyse expressive
power of query language

3. Transfer
understanding back to
graph learning world

GEL

Distinguishability,
approximation, generalisation,

uniform and non-uniform
expressiveness

Conclusion

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Subgraph GNNs
Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Todos
MPNNs: Efficient, most widely used but not expressive ()

Methods matching for require tensors making them inefficient

Ongoing efforts to boost power but preserve efficiency

𝖢2

𝖢k k > 2

Subgraph GNNs
Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Feature augmentation

Barceló et al.: Graph neural networks with local graph parameters. (2021)
Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Sato et al.: Random features strengthen graph neural networks (2021).
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Precompute hom/iso counts

Random features

Spectral/Global properties

Running graph learning
method on a derived view.

Analysis of expressive power (logic,
hom count,…)

Running graph learning
method on many views, then

aggregate. Analysis of expressive
power

Todos
Analysis does not always explain experiments. Is a more fine grained analysis
possible, perhaps taking learning process into account?

Didn’t mention graphons (limits of graphs): Expressivity?

Does connection with GEL (aggregate query language) allow for more transferal
of knowledge from database theory/practice to ML?

If the underlying graph is the result of a query, can one develop a factored graph
learning approach?

Recurrent GNNs are closely related to fixpoint computations. Relationship to
query language with recursion?

Relational embedding methods?

Conclusion

The query language/logic point of view provides a good abstraction
of graph learning methods.

Leads to interesting insights in capabilities of graph learning
methods.

Great opportunity for database theory and theoretical computer
science community contribute …

