

Intro

» Database (DB) theoreticians love graphs.

2/76

Intro

» Database (DB) theoreticians love graphs.

» But so do machine learners (ML).

2/76

Intro

» Database (DB) theoreticians love graphs.

» But so do machine learners (ML).

How to understand what ML folks are doing with graphs from a DB perspective?

2/76

Conclusion

» Graph learning methods can be expressed in specialized graph embedding languages.

3/76

Conclusion

» Graph learning methods can be expressed in specialized graph embedding languages.

> These languages can be analyzed with regards to expressive power using familiar
DB techniques.

3/76

v

v

v

v

Conclusion

Graph learning methods can be expressed in specialized graph embedding languages.

These languages can be analyzed with regards to expressive power using familiar
DB techniques.

This results in a better understanding of graph learning methods; and

forms a bridge between graph learning and DB theory.

3/76

A different scope

Previous keynotes at PODS on graph learning:

» word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data, by Martin Grohe (PODS 2020)

» Databases as Graphs: Predictive Queries for Declarative Machine Learning by Jure
Leskovec.

| nevertheless hope to convey some alternative point of view.

4/76

1. Preliminaries
Graphs, embeddings and graph learning

5/76

Graphs: One definition to rule them all

» A graph G = (Vg, Eg, Lg) with vertex set Vi, edge set Eg € Vi x Vi, and vertex
labelling Lg : Vg — X for some set ¥ of labels.

» We often assume ¥ = R? for some dimension d ¢ N.

Finite set of labels — hot-one encoding, e.g., labels a, band ¢: (1,0, 0).
R e
a b Cc

D
© ©

Event Graphs Computer Networks Disease Pathways ‘n
owledge Graphs
Social Networks Economic Networks Communication Networks e rap Regulatory Networks
Nz \ ~N e A
= = I ; Ot DL
E P .
o Q
Food Webs Particle Networks Underground Networks Citation Networks Internet Networks of Neurons Code Graphs Molecules 3D Shapes

6/76

cs224w.stanford.edu

Graph embeddings

In this tutorial, graph learning is about learning (partially) unknown graph embeddings.

> Let G be the class of all graphs.
> Let Y be an output space.
» A graph embedding is a function of the form

£:G-Y.

7/76

Graph embeddings

In this tutorial, graph learning is about learning (partially) unknown graph embeddings.

> Let G be the class of all graphs.
> Let Y be an output space.
» A graph embedding is a function of the form

£:G-Y.

For example: prediction of chemical/medical property of molecules

¢: ﬁ,;;&, — {yes,no}

7/76

Vertex embeddings

Also, graph learning is about learning unknown vertex embeddings.

> Let G be the class of all graphs.

> Let V be the class of all vertices.

> Let Y be an output space.

> A vertex embedding is a function of the form

E:G->(V->Y).

8/76

Vertex embeddings

Also, graph learning is about learning unknown vertex embeddings.

v

Let G be the class of all graphs.
Let V be the class of all vertices.
Let Y be an output space.

v

v

> A vertex embedding is a function of the form

E:G->(V->Y).

For example: prediction of the subject of papers in citation network

A paperl —— computer science

&: B/ — { paper2 — biology

8/76

p-Vertex embeddings

More generally, graph learning is about learning unknown p-vertex embeddings.

> Let G be the class of all graphs.

> Let V be the class of all vertices.

» Let Y be an output space.

> A p-vertex embedding is a function of the form

£:G-> (VP ->Y).

9/76

http://www.differencebetween.net/

p-Vertex embeddings

More generally, graph learning is about learning unknown p-vertex embeddings.

v

Let G be the class of all graphs.

Let V be the class of all vertices.

Let Y be an output space.

> A p-vertex embedding is a function of the form

£:G-> (VP ->Y).

v

v

For example: Link prediction in social networks (p = 2)

(persony, person,) — 1 (will connect)
N — { (persons, persons) — 0 (will not connect)

9/76

http://www.differencebetween.net/

Embeddings will be at the core of this tutorial.

10/76

Invariance

An important requirement is that embeddings should be invariant, i.e., independent of
the chosen graph representation.

11/76

Invariance

An important requirement is that embeddings should be invariant, i.e., independent of
the chosen graph representation.

> A p-vertex embedding & is called invariant if for any two graphs G and H in G,
for any graph isomorphism 7 : Vg - Vi from G to H and any p-tuple of vertices
ve VP

G

f(G V) = f(W(G)* W(V))'

> Similar to the genericity requirement for query languages.

11/76

How are embedding methods specified?

> In the ML community, embedding methods are described by their implementations
using linear algebra and other computations on real numbers.

» Crucially, these implementation have learnable parameters/weights.

» Typically, embeddings are defined layer-wise (deep architectures).

12/76

Graph Neural Networks 101

» Let o a non-linear activation function R — R (ReLU, sigmoid, sign,...).
» Vertex set of graph identified with [n]:={1,2,..., n} for some neN.
» Output space Y = R for some d € N.

13/76

v

v

v

Graph Neural Networks 101

Let o a non-linear activation function R - R (ReLU, sigmoid, sign,...).
Vertex set of graph identified with [n]:={1,2,...,n} for some n e N.
Output space Y = R for some d € N.

Matrix F(®) in R™ represents vertex feature computed in layer t.

In particular, F\(,t.) in R**? denotes embedding of vertex v.

13/76

Graph Neural Networks 101

Let o a non-linear activation function R - R (ReLU, sigmoid, sign,...).
Vertex set of graph identified with [n]:={1,2,...,n} for some n e N.
Output space Y = R for some d € N.

Matrix F(®) in R™ represents vertex feature computed in layer t.

In particular, F\(,t.) in R¥9 denotes embedding of vertex v.

“learnable” weight matrices WY),Wgt) e R and bias b(") e R

13/76

Graph Neural Networks 101

Let o a non-linear activation function R - R (ReLU, sigmoid, sign,...).
Vertex set of graph identified with [n]:={1,2,...,n} for some n e N.
Output space Y = R for some d € N.

Matrix F(!) jn R™ represents vertex feature computed in layer t.

In particular, F\(,t.) in R¥9 denotes embedding of vertex v.

“learnable” weight matrices Wgt),Wgt) e R and bias b(") e R

FRi=Lg(v) Fd=0 (F(f.‘l)WY) Y W b(f>)
ueNg(v)

By varying weights and biases, an infinite family of vertex embeddings is obtained.

13/76

v

v

v

Graph Neural Networks 101

We can also define a graph embedding
“learnable” weight matrix W € R?*? and bias b e R*“.

L is number of layers.

Fzza(» FSE>W+b)

veVi

Easy to see that these GNNs define invariant embeddings.

14/76

Graph learning

» But what does “learning an unknown embedding” mean?

> We briefly discuss this in the semi-supervised setting.

15/76

Ingredient #1: Training set

We want to learn W : G — (VP - Y) but we may only partially know this embedding ...

> Partial knowledge of W is revealed through a training set
T = {(617"17\“((;17"1))7 sy (G€7vé7w(GZ7V€))} cGxVPxY,

with graphs G; € G and p-vertex tuples v; in G;.

16 /76

Ingredient #1: Training set

We want to learn W : G — (VP - Y) but we may only partially know this embedding ...

> Partial knowledge of W is revealed through a training set
T = {(Gl7vlaw(G1aV1))a ey (GAE:VZ?w(GZvV@))} S g x Vp x Y:

with graphs G; € G and p-vertex tuples v; in G;.

Gka -
S0

(molecule,yes/no) (cora, paper, topic) (social,py.p,, yes/no)

16 /76

Ingredient #2: Hypothesis class

The partially known embedding W will be learned by selecting a good candidate from a
class of embeddings.

> An hypothesis class is a collection F of invariant p-vertex embeddings:

F c{all invariant p-vertex embeddings}.

17/76

Ingredient #2: Hypothesis class

The partially known embedding W will be learned by selecting a good candidate from a
class of embeddings.

> An hypothesis class is a collection F of invariant p-vertex embeddings:

F c{all invariant p-vertex embeddings}.

For example, F can be the collection of

GNN 101's
Graph kernel methods

v

v

> Message-Passing Neural Networks

> Invariant Graph Networks

v

Subgraph Networks

17/76

Ingredient #3: Loss function

How to compare W (embedding to be learned) with embeddings £ from F7?

» This is done using a loss function L: Y2 - R.
> Given graph G, p-vertex tuple v in our training set 7 and embedding £ in our
hypothesis class F,
L(£(G.v), W(G,v)) eR

—_———— — —
eY eY

measures quality of £ on the training example (G,v,V(G,v)).

18/76

Ingredient #3: Loss function

How to compare W (embedding to be learned) with embeddings £ from F7?

» This is done using a loss function L: Y2 - R.
> Given graph G, p-vertex tuple v in our training set 7 and embedding £ in our
hypothesis class F,
L(£(Gv), W(G,v)) e R

—_——— —
eY eY

measures quality of £ on the training example (G,v,V(G,v)).

Example loss functions: cross entropy, least squares, ...

18/76

v

v

Graph learning: Empirical risk minimization

Given training data
T = {(levlaw(Glavl))a (Gfavﬁvw(vave))} XVPXY

hypothesis class F, and

loss function L, return

! > L(£(Gy,v), W(G,v)).

¢:=arg m|n
|T| (G, W(GwV;))eT

In other words, find a graph, vertex or p-vertex embedding in F which minimizes
the risk (measured by the loss function) on the training data.

19/76

Graph learning: Empirical risk minimization

a 1
¢ :=argmin — Y, L(£(Gi,v), W(G,vy)).
& [T (6,0, W C))eT

> Graph learning systems: optimization techniques for finding best hypothesis.

» Typically based on back propagation and gradient descent like methods.

20/76

Graph learning: Empirical risk minimization

a 1
¢ :=argmin — Y, L(£(Gi,v), W(G,vy)).
&5 T (6,0, W C))er

> Graph learning systems: optimization techniques for finding best hypothesis.

» Typically based on back propagation and gradient descent like methods.

> We will be focussing on:

Expressivity of classes F of embeddings.

20/76

2. Expressive Power
What graph information can be extracted by embedding methods?

21/76

Expressivity questions

Recall our GNN 101's.

> Which graph or vertex embeddings can they express?
> Which graph or vertex embeddings can they approximate?

» Which graphs or vertices can be discriminated /distinguished?

Answers to these questions may reveal
> what graph information is used by embedding methods;
> which embeddings could — in principle — be learned; and

> whether more powerful embedding methods may be needed for the application at
hand.

22/76

Expressiveness notions |

Let W:G > (VP > Y) be a p-vertex embedding and let F be a class of embeddings
and let C be a subset of G.

» F can C-express WV if
e FVGeC,Vve VE:V(G,v) =¢(G,v).
» F can C-approximate W if
Ve>0,36 e F,¥YGeC,Vve VE: |W(G,v)-£(G,v)| <e

for some norm |- | on Y.

If C =G we just say express or approximate.

23/76

Expressiveness notions I

Separation power measures how well F can separate different inputs.

> As before, F be a class of p-vertex embeddings.

» The separation power of F is captured by equivalence relation p(F) on G x V°:

(G,v; H,w) ep(F) <= Ve F:£(G,v) =¢(H,w).

» In other words, (G,v) and (H,w) are in p(F) when these cannot be separated by
any embedding in F

> Similar to the notion of indistinguishability for logics and query languages.

24 /76

Separation power

Strongest power p(F) A expressive

» F powerful enough to distinguish non-isomorphic
graphs:

p(F) = {all pairs of isomorphic graphs}.

Weakest power

» F consisting of constant functions.

p(F) ={all pairs of graphs}. p(f)v expressive

Separation power allows for comparing totally different embedding methods by means
of subset relationship of their separation power.

25/76

Expressive power in ML community

> Primary focus has been on separation power.

» Aim is to provide a characterization of when (G, H) € p(F) holds.

> For example,
Theorem
p(GNNs 101) = p(color refinement).

Shown in the - by now - seminal paper in the area of graph Iearningl.

1
1= Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI
(2019)

26 /76

Expressive power in ML community

» Characterizing p(F) is a bit of hot potato game.
» Try to find characterizations of p(F) that are insightful.

27 /76

Expressive power in ML community

Characterizing p(F) is a bit of hot potato game.
Try to find characterizations of p(JF) that are insightful.

For example, color refinement has been well-studied, many properties thereof are
known.

In particular, G and H are in p(color refinement) if and only if
hom(T,G) =hom(T,H)

for all trees T. Here, hom(T, G) counts homomorphisms from T to G2

GNNs 101 can only leverage tree-based information present in the graphs.

2
I= Dell, Grohe and Rattan: Lovasz Meets Weisfeiler and Leman. ICALP 2018
27 /76

Separation power

Two additional reasons for studying separation power:
1. Close connection between separation power p(F) and ability for F to approximate
functions.

2. Close connection between p(F) and Vapnik-Chervonenkis (VC) dimension of F.
This implies properties of generalization aspects of F3

3
1= WL meet VC. Morris, G*, Ténshoff and Grohe. ICML 2023

28/76

Stone-Weierstrass

» C be a compact subset of G.
> Assume embeddings in F are continuous.

> We can use tools from analysis and topology.

Theorem (General version of Stone-Weierstrass)

If F is closed under linear combinations and product, then F can C—approximate any
continuous embedding W : G — R such that

p(F) < p({V})
holds.

» Can be generalized to vertex embeddings and output spaces Y = R9. #'5

4
1= Azizian and Lelarge. Characterizing the Expressive Power of Invariant and Equivariant GNNs, ICLR 2021

5
I’= G* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022

29/76

GNNs 101

Theorem
On compact sets of graphs, GNNs 101 can approximate any continuous embedding W
whose separation power is bounded by color refinement.

Follows from p(GNNs 101) = p(color refinement), universality theorem of neural net-
works (to approximate product), and Stone-Weierstrass. (Alternative proof based on
homomorphism counts.®)

6
I’= Nguyen and Maehara. Graph Homomorphism Convolution. ICML 2020.

30/76

Universality

Consequence of Stone-Weierstrass:’

Theorem

For a class F to be able to approximate any invariant embedding on a compact set of
graphs, F needs to be able to separate any two non-isomorphic graphs.

7
1= Chen, Villar, Chen and Bruna. 2019. On the Equivalence Between Graph Isomorphism Testing and Function Approximation With GNNs.

Neurips 2019.
31/76

Promised query language perspective is coming up in a few moments.

32/76

Expressive power in ML community

v

Every week new embedding methods are being proposed.
» Continuous stream of papers on arxiv.

» Has become standard to analyze separation power of new methods.

v

This is done often in an ad hoc way.

This is where the language approach comes in the picture.

33/76

A small selection of methods...

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs
Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs
KWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs

34/76

Plan of action

1. View embedding methods as queries in some graph embedding language

2. Transfer our understanding of separation power of these languages back to embed-
ding methods.

Recipe
> A new embedding method just needs to be cast in the embedding language to
know a bound on its expressive power.

35/76

3. Embedding Language #1:
Message Passing Neural Networks

36/76

Message Passing Neural Networks (MPNNs)

» We go back in time (around 2016) when embedding methods like

» Graph convolutional networks (Duvenaud et al. 2016, Kearnes et al. 2016),
Gated GNNs (Li et al. 2016),
Interaction Networks (Battaglia et al. 2016),
Deep tensor neural networks (Schiitt et al. 2017), and
Laplacian based graph convolutional networks (Bruna et al. 2013, Defferrard
et al. 2016, Kipf & Welling 2016)

were “hot”.

v

v

v

v

37/76

Message Passing Neural Networks (MPNNs)

» In 2017, Gilmer et al.® looked at the specifications in those papers

and proposed a first unifying framework for specifying embedding methods: Mes-

sage Passing Neural Networks

b =z .0") t=o (w’ al) 4 U hﬁ."”) @)
1: In?ut: mplecule, radllus R,| 0_al [hﬁur) ”h‘t‘r;‘nr] LN RO (ww - (r:’ X hf,"”)) -
Hj ... Hp, output weights V s S, "

2: Initialize: fingerprint vector| * =7 (weal Ul) ® h() = (1-z) o h{™) 42, o hl) ©)
3: for each atom a in molecule
4 1y < g(a) > lookup atom feat IN(G) = ¢o(a(G, X, or(m(G)))))
5:for L=1to R) > for each 14 m(G) = B = {bhier.nn WG X.E) =C = {e}1no
6: for each atom a in molecule falby) = ex Joles) = @
7: rp...ry = neighbors(a) Sr(B) = E = {erhimr. v 60(C) =P = {pihi=tno
8: V4T, + Z\l:l r; i > ‘Th ing function e the ohiects and relations intq i ion terms he —
9: T, n‘(vH‘L) e smooth luncugn weny =h (VY Fi Vi | G=1...f). 32
0: i « softmax(r,W7,) > sparsify i=1
1: fefri 1> [TFETWOTR TGNy WITT e TOMOWNE Ty TTET
2: Return: real-valued vectol HED =U(D’%zif)’%11<’)w‘”) . @

Here, A = A + Iy is the adjacency matrix of the undirected graph G with added self-connections|

8
1= Gilmer, Schoenholz, Riley, Vinyals, Dahl. Neural Message Passing for Quantum Chemistry, Neurips, 1263-1272 (2017)

38/76

Message Passing Neural Networks (MPNNs)

> Liberally interpreted, Gilmer et al. proposed an inductive way of defining vertex
and graph embeddings.
> Indeed, one has initial vertex embeddings

£:G->(V->R):(G,v) > vg(v)

for some encoding of the vertex label in vg(v) € ¥ in RY.

39/76

Message Passing Neural Networks (MPNNs)

> Liberally interpreted, Gilmer et al. proposed an inductive way of defining vertex
and graph embeddings.
> Indeed, one has initial vertex embeddings

£:G->(V->R):(G,v) > vg(v)

for some encoding of the vertex label in vg(v) € ¥ in RY.

» Then, let¢' : G - (V — Rd,) be an old vertex embedding. A new vertex embedding
£:G— (V—>RY) can be obtained by:

39/76

Message Passing Neural Networks (MPNNs)

> Liberally interpreted, Gilmer et al. proposed an inductive way of defining vertex
and graph embeddings.
> Indeed, one has initial vertex embeddings

£:G->(V->R):(G,v) > vg(v)

for some encoding of the vertex label in vg(v) € ¥ in RY.

» Then, let¢' : G - (V — Rd,) be an old vertex embedding. A new vertex embedding
£:G— (V—>RY) can be obtained by:

(G7 V)'—>§(G, V) = Z él(G7u)

ueNg(v)

39/76

Message Passing Neural Networks (MPNNs)

> Liberally interpreted, Gilmer et al. proposed an inductive way of defining vertex
and graph embeddings.
> Indeed, one has initial vertex embeddings

£:G->(V->R):(G,v) > vg(v)

for some encoding of the vertex label in vg(v) € ¥ in RY.

» Then, let¢' : G - (V — Rd,) be an old vertex embedding. A new vertex embedding
£:G— (V—>RY) can be obtained by:

(G,v) ~£(G,v):= Update (£(G,v), Y €(Gu))
any function ueNG(v)

de’ SR4

39/76

Message Passing Neural Networks (MPNNs)

> Finally, one can also construct graph embeddings £ : G — R from a vertex embed-
ding £':G - (V > R?) as follows:

G~ £(6):= > €(Gv)

veVg

40/76

Message Passing Neural Networks (MPNNs)

> Finally, one can also construct graph embeddings £ : G — R from a vertex embed-
ding £':G - (V > R?) as follows:

G ¢£(G) = Readout(3 €'(G,v))

. veV,
any function G

RdCﬁRd

40/76

Message Passing Neural Networks (MPNNs)

> Finally, one can also construct graph embeddings £ : G — R from a vertex embed-
ding £':G - (V > R?) as follows:

G ¢£(G) = Readout(3 €'(G,v))

. veV,
any function G

RdCﬁRd

o (FEOWO « AFCDW 1 B0

-R
r A
Easy exercise: The GNNs 101 we have seen before are MPNNs. -+ e

7 :n(rLi"’wﬁ'h » F&")wg'th“‘] F =”(» r“!wm)
welgte) Ve

» learnable weight mat

40/76

Let's put on our database glasses

41/76

Let's put on our database glasses (you can find those under your seats).

41/76

MPNNs as a language

We can turn MPNNSs into a specification language for vertex and graph embeddings.

> We fix the output space Y to be Uy RY.
> We take two variables x; and x,.

> Inductively define MPNN expressions .

42/76

MPNNs as a language

We can turn MPNNSs into a specification language for vertex and graph embeddings.

> We fix the output space Y to be Uy RY.
> We take two variables x; and x,.
*> Inductively define MPNN expressions . Each expression ¢ comes with:

» a dimension dim(y) € N and
> a set of free variables fv(yp).

42/76

MPNNs as a language

We can turn MPNNSs into a specification language for vertex and graph embeddings.

> We fix the output space Y to be Uy RY.
> We take two variables x; and x,.
*> Inductively define MPNN expressions . Each expression ¢ comes with:

» a dimension dim(y) € N and
> a set of free variables fv(yp).

» Semantics: p-vertex embeddings £, : G - (V* - Y) (p determined by number
free variables, output space RY by dimension of).

42/76

Atomic expressions
> Initially, atomic MPNN expressions are of the form

@(x;) = lab;(x;)

with free variable x;, j =1,2,3,... and of dimension 1.

43/76

Atomic expressions

> Initially, atomic MPNN expressions are of the form
¢(x;) :=labj(x;)

with free variable x;, j =1,2,3,... and of dimension 1.

For example, let
@(x1) := Laby(xy)

and G a graph with vertex labelling v¢ : Vg — R3. The corresponding semantics is the
vertex embedding

o1 (Gv) = (v6(v))2€R

i.e., the second component of vg(v) € R3.

43/76

Function application

We close under application of functions coming from some set €.

» Consider MPNN expressions ;(x;), ..., pe(x;) with free variable x; and of dimen-
sion dy, ..., dy, respectively.

» Take a function F: RA*+9% L RY in). Then,

o(x;) = F(’v?l(xi): cee W(Xi))

is again an MPNN expression, of dimension d and free variable x;.

44/76

Function application

We close under application of functions coming from some set €.

» Consider MPNN expressions ;(x;), ..., pe(x;) with free variable x; and of dimen-
sion dy, ..., dy, respectively.

» Take a function F: RA*+9% L RY in). Then,

o(x;) = F(%(Xi): cee W(Xi))

is again an MPNN expression, of dimension d and free variable x;.

Example:
¢(x1) = ReLU('(x;)) with ReLU(x) := max{0, x} in Q

with semantics

£, :(G,v) = RelLU(£ (G, v))

44/76

Neighborhood aggregation

We close under restricted application of aggregation functions from a set ©.

» Let p1(x1) and o(xy) expressions with free variables x; and x, of dimension d;

and d,, respectively.
> Let @ be any aggregate function from bags of elements in R%*% o RY,

> Then,
6
() = agel, (£10), 20%) | E(a. %))
—_—
edge relation
is an MPNN expression of dimension d and free variable x; (similarly with roles of
x1 and x, reversed.)

45/76

Neighborhood aggregation

We close under restricted application of aggregation functions from a set ©.

» Let p1(x1) and o(xy) expressions with free variables x; and x, of dimension d;

and d,, respectively.
> Let @ be any aggregate function from bags of elements in R%*% o RY,

> Then,
6
() = agel, (£10), 20%) | E(a. %))
—_—
edge relation
is an MPNN expression of dimension d and free variable x; (similarly with roles of

x1 and x, reversed.)

Example:
sum

o(xq) = age,, (@1(X1)a<P2(X2)|E(X1,X2))
and corresponding embedding

£¢:(G7v)'_) Z (gapl(GvV)vf<p2(Gvu))

(v,u)eEg 45 /76

Global aggregation

We can also express graph embeddings.

» Let ¢'(x;) be an MPNN expression with free variable x; and of dimension d’.
> Let @ be an aggregation function from bags of elements in R? to RY.
> Then,

o= agel (¢(x1))

is an MPNN expression of dimension d and no free variables.

46 /76

Global aggregation

We can also express graph embeddings.

» Let ¢'(x;) be an MPNN expression with free variable x; and of dimension d’.
> Let @ be an aggregation function from bags of elements in R? to RY.
> Then,

o= agel (¢ (%))

is an MPNN expression of dimension d and no free variables.

Example:
P = agg;’m (<P1 (Xl))

and corresponding embedding

€1 G) (&,(Gv)

veVg

46 /76

MPNN(Q, ©)

> We have thus defined a language MPNN(Q, ©).

> A very limited fragment of calculus with aggregates.9

> It differs from classical MPNNs because in those one restricts how function appli-
cation and aggregation interleave:

Sﬁ(t) (x1) = F(t)(@(t_l)(X1),agg>0:)(SO(t_l)(Xz) ‘ E(X1,X2)))

9
I’= Hella, Libkin, Nurmonen and Wong, Logics with aggregate operators, JACM 2001.
47 /76

Embedding methods

» Existing architectures can be easily cast as MPNN(, ©) expressions, due to more
flexible definition when compared to classical MPNNs.

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs
Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs
KWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs

48 /76

MPNN(Q, ©)

What about separation power of MPNN(Q,©)?

49/76

Color refinement

Color refinement: lteratively computes a coloring of vertices of a graph:

1. Initialization: all vertices have their original colors (labels)

2. Refinement Step: two vertices v and w get different colors if the there is
a color ¢ such that v and w have a different number of
neighbors of color c.

This process terminates and a graph will get a color based on the multiset of colors of
all its vertices.

50/76

Color refinement

Color refinement: lteratively computes a coloring of vertices of a graph:

1. Initialization: all vertices have their original colors (labels)

2. Refinement Step: two vertices v and w get different colors if the there is
a color ¢ such that v and w have a different number of
neighbors of color c.

This process terminates and a graph will get a color based on the multiset of colors of
all its vertices.

p(color refinement) contains pairs of graphs/vertices with the same coloring.

50/76

MPNN(Q,©): Separation power

Theorem
For any Q and ©, po/l(co/or refinement) c po/l(MPNN(Q, @))

10,11

» For MPNNs, this was shown in the seminal papers and then expanded.12

> This can also be shown using the correspondence
p(color refinement) = p(guarded G,)

and elimination of function and aggregation functions by detour to infinitary coun-
terparts of guarded C2.13

10
I’ Xu, Hu, Leskovec, Jegelka. How Powerful are Graph Neural Networks? ICLR (2019)
11
1= Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI
(2019)

I’= G* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022
13
I’= Hella, Libkin, Nurmonen and Wong, Logics with aggregate operators, JACM 2001.

51/76

MPNN(Q,©): Separation power

Which functions are needed to match color refinement in separation power?

Theorem

if Q2 contains concatenation, linear combinations and non-linear activation functions and
© consists of summation, then

po/l(color refinement) = po/l(l\/IPNN(Q, 9))

» Shown by explicit construction of GNNs 101.1*

14
1= Morris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI
(2019)

52/76

MPNN(Q,©): Approximation power

Theorem

For sufficiently rich sets Q of functions and compact C sets of G, MPNN(Q,sum) can
C-approximate any embedding V : G — R satisfying p(color refinement) ¢ p({W}).

> For example: € is rich enough when it is mlp-closed. That is, for any g € N, any
multilayered perceptron®® mlp: RY - R and any functions f;,...,f; already in Q,

mlp(f,...,f;)

is also in F.

15 -
MLPs: Layered architectures F(t) = o'(W(t)F(t D + b(t)), F(O) := x with learnable weight matrices W<t), bias vectors b(t), and activation

functions o.

53/76

MPNN(€2,©): True expressiveness

Can we get rid of compact domain?

Assuming graphs with discrete labels.®

Theorem
MPNN(S2,©) can express any unary query expressible in graded modal logic.

GNNs 101 already suffice for this.

Theorem

If a first-order logic unary query is expressible in MPNN(Q,©), then it is a query ex-
pressible in graded modal logic.

16
1= Barceld, Kostylev, Monet, Pfez, Reutter and Silva. The Logical Expressiveness of Graph Neural Networks. ICLR 2020
54 /76

MPNN(£2,©): Normal forms

» Can any MPNN(Q,©) be converted into a “normal form” MPNN(Q,©)

So(t)(Xl) = F(t)(@(t_l)(xl),aggz;t)(SO(t_l)(Xz) ‘ E(X1,X2)))

» Important for implementation purposes!

» Partial results when €2 consists of linear combinations and activation functions o,
and © is summation.'’

Theorem
» Every MPNN(2,sum) is equivalent to a normal form MPNN if o = RelLU.

> On compact domain C, normal form ReLU MPNNSs C-approximate embeddings in
MPNN(Q,sum).

17
I’ G*, Steegmans and Van den Bussche: On the Expressive Power of Message-Passing Neural Networks as Global Feature Map Transformers.

FolKS 2022

55/76

End of story?

» Many other embedding methods exist which are not in MPNN(Q,©).
Only “simple” GNNs are MPNNs :-(

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs
Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs
KWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs

How to analyze all other embedding methods?

56 /76

4. Embedding Language #2:
GEL(Q,0)

and its finite variable fragments

57/76

Higher-order MPNNs

We expand the language of MPNN(2,©): GEL(Q2,0©)

58/76

Higher-order MPNNs

We expand the language of MPNN(2,©): GEL(Q2,0©)

1. More variables xi, x>, .. .;
2. More atomic MPNNs;

3. More general function and aggregation applications.

58/76

Atomic GEL expressions

Label: Labj(x;) of dimension 1, free variable x;;
Edge: E(x;,x;) of dimension 1, free variables x; and x;;

Equality: 1[x;opx;] with op € {=,#}, of dimension 1 and free variables x; and x;.

59/76

Atomic GEL expressions

Label: Labj(x,-) of dimension 1, free variable x;;
Edge: E(x;,x;) of dimension 1, free variables x; and x;;

Equality: 1[x;opx;] with op € {=,#}, of dimension 1 and free variables x; and x;.

Example:
(x1,%) = E(x1, %) and ¥ (x, x0) = 1[x op xo]

and corresponding 2-vertex embeddings

1 if (v,w) e Eg

0 otherwise.

1 ifvopw

0 otherwise.

5@:(G,v,w)l—>{ and&/):(G,v,W)H{

59/76

Function Application

We close GEL under function applications with function in €.

> As before, € still set of functions R? - R
» Consider expressions ¢1(X1),...,pe(x,) with free variables x; and of dimension

di,...,dy, respectively.
» Take a function F: R *% R in Q. Then,

is again an MPNN expression, of dimension d and free variables x := x; U --- U x,.

60/76

Function Application

We close GEL under function applications with function in €.

> As before, € still set of functions R? - R
» Consider expressions ¢1(X1),...,pe(x,) with free variables x; and of dimension

di,...,dy, respectively.
» Take a function F: R *% R in Q. Then,

is again an MPNN expression, of dimension d and free variables x := x; U --- U x,.

Example:
@(X13X27X3) = fx(E(Xl,X2); fx(E(X17X2)> E(X23X3)))
with £, : R> > R: (a,b) - ax b. Then, we obtain a 3-vertex embedding

1 (u,v),(u,w), and (v,w) € Eg
0 otherwise.

fgoz(G”JaVyW)’_){

60/76

Aggregation

We close GEL under aggregation with aggregations in ©.

» Let p1(x,y) and @,(x,y) expressions with free variables (x,y) and of dimension
d; and d,, respectively.

> Let @ be any aggregate function from bags of elements in R? to RY.
» Then,

o(x) = agey (21(x,y) | w2(x.¥))

is an expression of dimension d and free variables x.

61/76

Aggregation

We close GEL under aggregation with aggregations in ©.

» Let p1(x,y) and @,(x,y) expressions with free variables (x,y) and of dimension
d; and d,, respectively.

> Let @ be any aggregate function from bags of elements in R? to RY.

» Then,

(%) = aggy (21 (0y) | 22 (x.y))

is an expression of dimension d and free variables x.

Semantics

£, (G,v) HO({{fwl(G,v,w) | weVest &, (G v,w)# 0}})

with p:=y|.

61/76

Fragments of GEL(2,©)

Important special fragments:

» GEL,(Q,0): only k variables xq,...,x, may be used;

» GGEL,(9Q,0): guarded fragment of GEL, in which aggregation and function ap-
plication are restricted = MPNN(£, ©)

62/76

Validation

MPNN(Q,©) GEL,(Q,0) GEL;(Q,0) GEL,(Q,0)

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs
Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs

For many of these GNNs, their layer definitions translate naturally into expressions in
our language.

63/76

What can we say about separation power of GEL,(2,0)?

64 /76

k-dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman algorithm:ls'19 Iteratively computes a coloring of
k-tuples of vertices of a graph

Intuitively, it can be seen as color refinement on a k-fold product of a graph

Again, has been subject to many theoretical studies and is used in graph isomorphism
algorithms

p(k-WL) contains pairs of k-tuples of vertices with the same k-WL coloring

It is known:? p(CR) 2 p(1-WL) 2 p(2-WL) 2 p(3-WL) 2 --- 2 p(graph iso).

18
I Grohe. The logic of graph neural networks LICS, 1-17 (2021)
19
1= Morris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt. Weisfeiler and Leman go Machine Learning: The Story So Far. CoRR
abs/2112.09992 (2021)

1= Cai, Fiirer, Immerman: An optimal lower bound on the number of variables for graph identification. Comb. 12(4):389-410 (1992)

65/76

Separation power of GEL,(2,0)

Theorem
For any Q and ©, p(k-WL) ¢ p(GEL,,1(£2,0))

Proofs?! rely on connections to logics and techniques from database theory22’23

Theorem

if Q contains concatenation, linear combinations and non-linear activation functions and
© consists of summation, then p(k-WL) = p(GEL,,1(£,0))

Approximation properties can be derived as well.

21

I'= G., Reutter, Expressiveness and approximation properties of GNNs, ICLR (2022)
22

1= Hella, Libkin, Nurmonen, Wong: Logics with Aggregates, JACM, 48(4): 880-907 (2001)
23

1= Cai, Fiirer, Immerman: An optimal lower bound on the number of variables for graph identification. Comb. 12(4):389-410 (1992)

66 /76

Back to ML

color refinement 1-WL 2-WL k-WL

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs
Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs
kKWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs

67 /76

6. What's Next?

68 /76

Fine grained analysis

1. Impact of different aggregation functions on expressive power.

> In initial work is investigated when summation MPNNs can be approximated by
mean or max MPNNs, and vice versa.?*

24
1= Rosenbluth, Ténshoff and Grohe: Some Might Say All You Need Is Sum, arxiv 2023.

69 /76

Fine grained analysis

1. Impact of different aggregation functions on expressive power.

> In initial work is investigated when summation MPNNs can be approximated by
mean or max MPNNs, and vice versa.?*

2. Quantitative approximation results.

> What is complexity of embeddings needed to approximate within €?

24
1= Rosenbluth, Ténshoff and Grohe: Some Might Say All You Need Is Sum, arxiv 2023.

69 /76

Lower bounds

Technique presented only gives upper bounds. Lower bounds, still case by case analysis.
3. Can we find “reductions” between embedding methods that preserve expressive power.

> This may help to show lower bounds by simulating “hard” embedding methods.

70/76

Lower bounds

Technique presented only gives upper bounds. Lower bounds, still case by case analysis.
3. Can we find “reductions” between embedding methods that preserve expressive power.

> This may help to show lower bounds by simulating “hard” embedding methods.

4. Fining the minimal k in GEL, (€, ©) needed for your method.

> The lower k the better the upper bound.
» (Semantic) treewidth notion for GEL expressions??

> Related to work on FAQ-Als when functions and aggregations can be seen as se-

miring operators.26

» We need to accommodate for non-linear activation functions.

25
I’= G* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022

26
1= Khamis, Ngo and Rudra: "FAQ: Questions Asked Frequently", PODS 2016

70/76

Hierarchy

5. Other hierarchies than Weisfeiler-Leman hierarchy.

» Some embedding methods can be cast in GEL,(£2,©) but are not as expressive as
(k—1)-WL.

> E.g., Reconstruction GNNs, ESANs, ID-Aware GNNs, Nested GNNs, Dropout-
GNNs.

» By imposing further restrictions on expressions in GEL,(Q,©) a more fine-grained
hierarchy can be obtained. 27, 28

> More work needed is to understand corresponding separation power. For example,
hom count characterizations.

27
1= Qian, Rattan, G*, Morris and Niepert. Ordered Subgraph Aggregation Networks. NeurlPS 2022
28
I’= Rattan and Seppelt: Weisfeiler-Leman and Graph Spectra. SODA 2023
71/76

Views

6. We can see embedding methods as views.

> Query rewriting using such views?
> View embedding: First embed graph using complex fixed embedding, followed by
simple learnable embedding of the view. 29

> Other?

29
1= Barcel'o, G*, Reutter, Ryschkov: Graph Neural Networks with Local Graph Parameters. NeurlPS 2021
72/76

Varia

v

Generalization properties (VC dimension, Rademacher complexity)
» Semi-ring valued embeddings and learning?

» Zero-one laws of embeddings 30

» Continuous WL 3!

> More connections with logic and descriptive complexity.32

30
I’ Adam-Day, lliant and Ceylan: Zero-One Laws of Graph Neural Networks, arxiv 2023

1= Boker, Levie, Huang, Villar and Morris: Fine-grained Expressivity of Graph Neural Networks, arxiv 2023

32
I'= Grohe. The Descriptive Complexity of Graph Neural Networks, arxiv 2023
73/76

Relational

And of course, as also mentioned in Jure's keynote:

Relational embeddings.

> Initial work by considering multi-relation graphs and analyzing power.33

33
1= Barceld, Galkin, Morris, Orth: Weisfeiler and Leman Go Relational Learning on Graphs (LoG) 2022.

74 /76

Thanks to

» The GEL(£,©) language and use for graph embeddings is heavily influenced by
earlier work on the expressive power of linear algebra and matrix query langua-
ges together with Robert Brijder, Thomas Mufioz, Cristian Riveros, Jan Van den
Bussche, and Domagoj Vrgoc.

» Transferral to ML: Pablo Barcelé, Martin Grohe, Christopher Morris, Gaurav Rattan,
Juan Reutter, Jasper Steegmans an Jan Van den Bussche.

75/76

v

v

v

There is interest in ML community for these kind of theoretical analyses (but pre-
ferably accompanied with some experiments).

Great opportunity for our community to contribute.

So far, these papers are in ML conference. Would be great to also have some at
PODS or ICDT!

Maybe you got some inspiration for doing so :-)

7676

	Introduction to Graph Learning
	Introduction
	Preliminaries
	Graphs and embeddings
	Invariance
	Empirical risk minimization

	Expressive Powerful
	Approximation
	Separation power

	MPNNs

