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Intro

▸ Database (DB) theoreticians love graphs.

▸ But so do machine learners (ML).

How to understand what ML folks are doing with graphs from a DB perspective?
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Conclusion

▸ Graph learning methods can be expressed in specialized graph embedding languages.

▸ These languages can be analyzed with regards to expressive power using familiar
DB techniques

.

▸ This results in a better understanding of graph learning methods; and▸ forms a bridge between graph learning and DB theory.
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A different scope

Previous keynotes at PODS on graph learning:▸ word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data, by Martin Grohe (PODS 2020)▸ Databases as Graphs: Predictive Queries for Declarative Machine Learning by Jure
Leskovec.

I nevertheless hope to convey some alternative point of view.
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1. Preliminaries
Graphs, embeddings and graph learning
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Graphs: One definition to rule them all

▸ A graph G = (VG ,EG ,LG) with vertex set VG , edge set EG ⊆ VG × VG , and vertex
labelling LG ∶ VG → Σ for some set Σ of labels.▸ We often assume Σ = Rd for some dimension d ∈ N.
Finite set of labels ↦ hot-one encoding, e.g., labels a, b and c: ( 1®

a
, 0®

b

, 0®
c
).

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4
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Source Images: Machine Learning with Graphs course from Jure Leskovec cs224w.stanford.edu
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Graph embeddings

In this tutorial, graph learning is about learning (partially) unknown graph embeddings.

▸ Let G be the class of all graphs.▸ Let Y be an output space.▸ A graph embedding is a function of the form

ξ ∶ G → Y.

For example: prediction of chemical/medical property of molecules

ξ ∶

Article

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract

Highlights
d A deep learning model is trained to predict antibiotics based

on structure

d Halicin is predicted as an antibacterial molecule from the

Drug Repurposing Hub

d Halicin shows broad-spectrum antibiotic activities in mice

d More antibiotics with distinct structures are predicted from

the ZINC15 database

Authors
Jonathan M. Stokes, Kevin Yang,

Kyle Swanson, ..., Tommi S. Jaakkola,

Regina Barzilay, James J. Collins

Correspondence
regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

In Brief
A trained deep neural network predicts

antibiotic activity in molecules that are

structurally different from known

antibiotics, among which Halicin exhibits

efficacy against broad-spectrum

bacterial infections in mice.

Stokes et al., 2020, Cell 180, 688–702
February 20, 2020 ª 2020 Elsevier Inc.
https://doi.org/10.1016/j.cell.2020.01.021

i An update to this article is included at the end

Ð→ {yes,no}

Source Images: Stokes et. al, “A Deep Learning Approach to Antibiotic Discovery”, Cell 180(4), 2020
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Vertex embeddings

Also, graph learning is about learning unknown vertex embeddings.

▸ Let G be the class of all graphs.▸ Let V be the class of all vertices.▸ Let Y be an output space.▸ A vertex embedding is a function of the form

ξ ∶ G → (V → Y).

For example: prediction of the subject of papers in citation network

ξ ∶ Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
paper1 Ð→ computer science
paper2 Ð→ biology⋮ ⋮
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p-Vertex embeddings

More generally, graph learning is about learning unknown p-vertex embeddings.

▸ Let G be the class of all graphs.▸ Let V be the class of all vertices.▸ Let Y be an output space.▸ A p-vertex embedding is a function of the form
ξ ∶ G → (Vp → Y).

For example: Link prediction in social networks (p = 2)

ξ ∶ Ð→
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(person1,person2) Ð→ 1 (will connect)(person3,person5) Ð→ 0 (will not connect)⋮ ⋮

Source Images: http://www.differencebetween.net/
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Embeddings will be at the core of this tutorial.
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Invariance

An important requirement is that embeddings should be invariant, i.e., independent of
the chosen graph representation.

▸ A p-vertex embedding ξ is called invariant if for any two graphs G and H in G,
for any graph isomorphism π ∶ VG → VH from G to H and any p-tuple of vertices
v ∈ V p

G
ξ(G ,v) = ξ(π(G), π(v)).

▸ Similar to the genericity requirement for query languages.
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How are embedding methods specified?

▸ In the ML community, embedding methods are described by their implementations
using linear algebra and other computations on real numbers.

▸ Crucially, these implementation have learnable parameters/weights.

▸ Typically, embeddings are defined layer-wise (deep architectures).

12 / 76



Graph Neural Networks 101

▸ Let σ a non-linear activation function R→ R (ReLU, sigmoid, sign,...).▸ Vertex set of graph identified with [n] ∶= {1,2, . . . ,n} for some n ∈ N.▸ Output space Y = Rd for some d ∈ N.▸ Matrix F(t) in Rn×d represents vertex feature computed in layer t.▸ In particular, F(t)v● in R1×d denotes embedding of vertex v .▸ “learnable” weight matrices W(t)
1 ,W(t)

2 ∈ Rd×d and bias b(t) ∈ R1×d .

F(0)v● ∶= LG(v) F(t)v● ∶= σ ⎛⎝F(t−1)v● W(t)
1 + ∑

u∈NG(v)
F(t−1)u● W(t)

2 + b(t)⎞⎠
▸ By varying weights and biases, an infinite family of vertex embeddings is obtained.
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Graph Neural Networks 101

▸ We can also define a graph embedding▸ “learnable” weight matrix W ∈ Rd×d and bias b ∈ R1×d .▸ L is number of layers.

F ∶= σ ⎛⎝ ∑v∈VG

F(L)v● W + b
⎞⎠

▸ Easy to see that these GNNs define invariant embeddings.
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Graph learning

▸ But what does “learning an unknown embedding” mean?
▸ We briefly discuss this in the semi-supervised setting.
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Ingredient #1: Training set

We want to learn Ψ ∶ G → (Vp → Y) but we may only partially know this embedding ...

▸ Partial knowledge of Ψ is revealed through a training set

T = {(G1,v1,Ψ(G1,v1)), . . . , (G`,v`,Ψ(G`,v`))} ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

Article

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract

Highlights
d A deep learning model is trained to predict antibiotics based

on structure

d Halicin is predicted as an antibacterial molecule from the

Drug Repurposing Hub

d Halicin shows broad-spectrum antibiotic activities in mice

d More antibiotics with distinct structures are predicted from

the ZINC15 database

Authors
Jonathan M. Stokes, Kevin Yang,

Kyle Swanson, ..., Tommi S. Jaakkola,

Regina Barzilay, James J. Collins

Correspondence
regina@csail.mit.edu (R.B.),
jimjc@mit.edu (J.J.C.)

In Brief
A trained deep neural network predicts

antibiotic activity in molecules that are

structurally different from known

antibiotics, among which Halicin exhibits

efficacy against broad-spectrum

bacterial infections in mice.

Stokes et al., 2020, Cell 180, 688–702
February 20, 2020 ª 2020 Elsevier Inc.
https://doi.org/10.1016/j.cell.2020.01.021

i An update to this article is included at the end

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)
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Ingredient #2: Hypothesis class

The partially known embedding Ψ will be learned by selecting a good candidate from a
class of embeddings.

▸ An hypothesis class is a collection F of invariant p-vertex embeddings:

F ⊆ {all invariant p-vertex embeddings}.

For example, F can be the collection of
▸ GNN 101’s▸ Graph kernel methods▸ Message-Passing Neural Networks▸ Invariant Graph Networks▸ Subgraph Networks▸ ....
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Ingredient #3: Loss function

How to compare Ψ (embedding to be learned) with embeddings ξ from F?
▸ This is done using a loss function L ∶ Y2 → R.▸ Given graph G , p-vertex tuple v in our training set T and embedding ξ in our

hypothesis class F ,
L(ξ(G ,v)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶∈Y

,Ψ(G ,v)´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶∈Y
) ∈ R

measures quality of ξ on the training example (G ,v,Ψ(G ,v)).

Example loss functions: cross entropy, least squares, ...
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Graph learning: Empirical risk minimization

▸ Given training data

T = {(G1,v1,Ψ(G1,v1)), . . . , (G`,v`,Ψ(G`,v`))} ⊆ G × Vp ×Y,

▸ hypothesis class F , and▸ loss function L, return

ξ̂ ∶= arg min
ξ∈F

1∣T ∣ ∑(Gi ,vi ,Ψ(G,vi))∈T
L(ξ(Gi ,vi),Ψ(Gi ,vi)).

▸ In other words, find a graph, vertex or p-vertex embedding in F which minimizes
the risk (measured by the loss function) on the training data.
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Graph learning: Empirical risk minimization

ξ̂ ∶= arg min
ξ∈F

1∣T ∣ ∑(Gi ,vi ,Ψ(G,vi))∈T
L(ξ(Gi ,vi),Ψ(Gi ,vi)).

▸ Graph learning systems: optimization techniques for finding best hypothesis.▸ Typically based on back propagation and gradient descent like methods.

▸ We will be focussing on:

Expressivity of classes F of embeddings.
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2. Expressive Power
What graph information can be extracted by embedding methods?

21 / 76



Expressivity questions

Recall our GNN 101’s.▸ Which graph or vertex embeddings can they express?

▸ Which graph or vertex embeddings can they approximate?

▸ Which graphs or vertices can be discriminated/distinguished?

Answers to these questions may reveal▸ what graph information is used by embedding methods;▸ which embeddings could – in principle – be learned; and▸ whether more powerful embedding methods may be needed for the application at
hand.

22 / 76



Expressiveness notions I

Let Ψ ∶ G → (Vp → Y) be a p-vertex embedding and let F be a class of embeddings
and let C be a subset of G.▸ F can C-express Ψ if

∃ξ ∈ F ,∀G ∈ C,∀v ∈ V p
G ∶ Ψ(G ,v) = ξ(G ,v).

▸ F can C-approximate Ψ if

∀ε > 0,∃ξε ∈ F ,∀G ∈ C,∀v ∈ V p
G ∶ ∥Ψ(G ,v) − ξε(G ,v)∥ < ε.

for some norm ∥ ⋅ ∥ on Y.
If C = G we just say express or approximate.

23 / 76



Expressiveness notions II

Separation power measures how well F can separate different inputs.

▸ As before, F be a class of p-vertex embeddings.▸ The separation power of F is captured by equivalence relation ρ(F) on G × Vp:

(G ,v;H,w) ∈ ρ(F) ⇐⇒ ∀ξ ∈ F ∶ ξ(G ,v) = ξ(H,w).
▸ In other words, (G ,v) and (H,w) are in ρ(F) when these cannot be separated by

any embedding in F▸ Similar to the notion of indistinguishability for logics and query languages.
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Separation power

Strongest power
▸ F powerful enough to distinguish non-isomorphic

graphs:

ρ(F) = {all pairs of isomorphic graphs}.
Weakest power
▸ F consisting of constant functions.

ρ(F) = {all pairs of graphs}.

ρ(F)

ρ(F) expressive

expressive

Separation power allows for comparing totally different embedding methods by means
of subset relationship of their separation power.
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Expressive power in ML community

▸ Primary focus has been on separation power.

▸ Aim is to provide a characterization of when (G ,H) ∈ ρ(F) holds.▸ For example,

Theorem
ρ(GNNs 101) = ρ(color refinement).

Shown in the - by now - seminal paper in the area of graph learning1.

1
RMorris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI

(2019)
26 / 76



Expressive power in ML community

▸ Characterizing ρ(F) is a bit of hot potato game.▸ Try to find characterizations of ρ(F) that are insightful.▸ For example, color refinement has been well-studied, many properties thereof are
known.▸ In particular, G and H are in ρ(color refinement) if and only if

hom(T ,G) = hom(T ,H)
for all trees T . Here, hom(T ,G) counts homomorphisms from T to G .2▸ GNNs 101 can only leverage tree-based information present in the graphs.

2
RDell, Grohe and Rattan: Lovász Meets Weisfeiler and Leman. ICALP 2018

27 / 76



Expressive power in ML community

▸ Characterizing ρ(F) is a bit of hot potato game.▸ Try to find characterizations of ρ(F) that are insightful.▸ For example, color refinement has been well-studied, many properties thereof are
known.▸ In particular, G and H are in ρ(color refinement) if and only if

hom(T ,G) = hom(T ,H)
for all trees T . Here, hom(T ,G) counts homomorphisms from T to G .2▸ GNNs 101 can only leverage tree-based information present in the graphs.

2
RDell, Grohe and Rattan: Lovász Meets Weisfeiler and Leman. ICALP 2018

27 / 76



Separation power

Two additional reasons for studying separation power:
1. Close connection between separation power ρ(F) and ability for F to approximate

functions.

2. Close connection between ρ(F) and Vapnik-Chervonenkis (VC) dimension of F .
This implies properties of generalization aspects of F .3

3
RWL meet VC. Morris, G*, Tönshoff and Grohe. ICML 2023
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Stone-Weierstrass

▸ C be a compact subset of G.▸ Assume embeddings in F are continuous.▸ We can use tools from analysis and topology.

Theorem (General version of Stone-Weierstrass)
If F is closed under linear combinations and product, then F can C−approximate any
continuous embedding Ψ ∶ G → R such that

ρ(F) ⊆ ρ({Ψ})
holds.

▸ Can be generalized to vertex embeddings and output spaces Y = Rd . 4,5

4
RAzizian and Lelarge. Characterizing the Expressive Power of Invariant and Equivariant GNNs, ICLR 2021

5
RG* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022
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GNNs 101

Theorem
On compact sets of graphs, GNNs 101 can approximate any continuous embedding Ψ
whose separation power is bounded by color refinement.

Follows from ρ(GNNs 101) = ρ(color refinement), universality theorem of neural net-
works (to approximate product), and Stone-Weierstrass. (Alternative proof based on
homomorphism counts.6)

6
RNguyen and Maehara. Graph Homomorphism Convolution. ICML 2020.
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Universality

Consequence of Stone-Weierstrass:7

Theorem
For a class F to be able to approximate any invariant embedding on a compact set of
graphs, F needs to be able to separate any two non-isomorphic graphs.

7
RChen, Villar, Chen and Bruna. 2019. On the Equivalence Between Graph Isomorphism Testing and Function Approximation With GNNs.

Neurips 2019.
31 / 76



Promised query language perspective is coming up in a few moments.

32 / 76



Expressive power in ML community

▸ Every week new embedding methods are being proposed.▸ Continuous stream of papers on arxiv.▸ Has become standard to analyze separation power of new methods.▸ This is done often in an ad hoc way.

This is where the language approach comes in the picture.
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A small selection of methods...

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet ...
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs

Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs ...
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs ...

34 / 76



Plan of action

1. View embedding methods as queries in some graph embedding language

2. Transfer our understanding of separation power of these languages back to embed-
ding methods.

Recipe▸ A new embedding method just needs to be cast in the embedding language to
know a bound on its expressive power.

35 / 76



3. Embedding Language #1:
Message Passing Neural Networks
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Message Passing Neural Networks (MPNNs)

▸ We go back in time (around 2016) when embedding methods like▸ Graph convolutional networks (Duvenaud et al. 2016, Kearnes et al. 2016),▸ Gated GNNs (Li et al. 2016),▸ Interaction Networks (Battaglia et al. 2016),▸ Deep tensor neural networks (Schütt et al. 2017), and▸ Laplacian based graph convolutional networks (Bruna et al. 2013, Defferrard
et al. 2016, Kipf & Welling 2016)

were “hot”.
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Message Passing Neural Networks (MPNNs)

▸ In 2017, Gilmer et al.8 looked at the specifications in those papers

Each succesive
vi = arg min

x2Rm kxk=1 x?{v0,...,vi�1}
krxk2

W

is an eigenvector of L, and the eigenvalues �i allow the smoothness of a vector x to be read off
from the coefficients of x in [v0, ...vm�1], equivalently as the Fourier coefficients of a signal defined
in a grid. Thus, just an in the case of the grid, where the eigenvectors of the Laplacian are the
Fourier vectors, diagonal operators on the spectrum of the Laplacian modulate the smoothness of
their operands. Moreover, using these diagonal operators reduces the number of parameters of a
filter from m2 to m.

These three structures above are all tied together through the Laplacian operator on the d-
dimensional grid �x =

Pd
i=1

@2x
@u2

i
:

1. Filters are multipliers on the eigenvalues of the Laplacian �.

2. Functions that are smooth relative to the grid metric have coefficients with quick decay in
the basis of eigenvectors of �.

3. The eigenvectors of the subsampled Laplacian are the low frequency eigenvectors of �.

3.2 Extending Convolutions via the Laplacian Spectrum

As in section 2.3, let W be a weighted graph with index set denoted by ⌦, and let V be the eigen-
vectors of the graph Laplacian L, ordered by eigenvalue. Given a weighted graph, we can try to
generalize a convolutional net by operating on the spectrum of the weights, given by the eigenvec-
tors of its graph Laplacian.

For simplicity, let us first describe a construction where each layer k = 1 . . . K transforms an input
vector xk of size |⌦| ⇥ fk�1 into an output xk+1 of dimensions |⌦| ⇥ fk, that is, without spatial
subsampling:

xk+1,j = h

0
@V

fk�1X

i=1

Fk,i,jV
T xk,i

1
A (j = 1 . . . fk) , (3.2)

where Fk,i,j is a diagonal matrix and, as before, h is a real valued nonlinearity.

Often, only the first d eigenvectors of the Laplacian are useful in practice, which carry the smooth
geometry of the graph. The cutoff frequency d depends upon the intrinsic regularity of the graph
and also the sample size. In that case, we can replace in (3.2) V by Vd, obtained by keeping the first
d columns of V .

If the graph has an underlying group invariance this construction can discover it; the best example
being the standard CNN; see 3.3. However, in many cases the graph does not have a group structure,
or the group structure does not commute with the Laplacian, and so we cannot think of each filter as
passing a template across ⌦ and recording the correlation of the template with that location. ⌦ may
not be homogenous in a way that allows this to make sense, as we shall see in the example from
Section 5.1.

Assuming only d eigenvectors of the Laplacian are kept, equation (3.2) shows that each layer re-
quires fk�1 · fk ·d = O(|⌦|) paramters to train. We shall see in section 3.4 how the global and local
regularity of the graph can be combined to produce layers with O(1) parameters, i.e. such that the
number of learnable parameters does not depend upon the size of the input.

This construction can suffer from the fact that most graphs have meaningful eigenvectors only for
the very top of the spectrum. Even when the individual high frequency eigenvectors are not mean-
ingful, a cohort of high frequency eigenvectors may contain meaningful information. However this
construction may not be able to access this information because it is nearly diagonal at the highest
frequencies.

Finally, it is not obvious how to do either the forwardprop or the backprop efficiently while applying
the nonlinearity on the space side, as we have to make the expensive multiplications by V and V T ;
and it is not obvious how to do standard nonlinearities on the spectral side. However, see 4.1.

5

Algorithm 1 Circular fingerprints
1: Input: molecule, radius R, fingerprint

length S
2: Initialize: fingerprint vector f  0S

3: for each atom a in molecule
4: ra  g(a) . lookup atom features
5: for L = 1 to R . for each layer
6: for each atom a in molecule
7: r1 . . . rN = neighbors(a)
8: v [ra, r1, . . . , rN ] . concatenate
9: ra  hash(v) . hash function

10: i mod(ra, S) . convert to index
11: fi  1 . Write 1 at index
12: Return: binary vector f

Algorithm 2 Neural graph fingerprints
1: Input: molecule, radius R, hidden weights

H1
1 . . . H5

R, output weights W1 . . . WR

2: Initialize: fingerprint vector f  0S

3: for each atom a in molecule
4: ra  g(a) . lookup atom features
5: for L = 1 to R . for each layer
6: for each atom a in molecule
7: r1 . . . rN = neighbors(a)
8: v ra +

P
N

i=1 ri . sum
9: ra  �(vHN

L ) . smooth function
10: i softmax(raWL) . sparsify
11: f  f + i . add to fingerprint
12: Return: real-valued vector f

Figure 2: Pseudocode of circular fingerprints (left) and neural graph fingerprints (right). Differences
are highlighted in blue. Every non-differentiable operation is replaced with a differentiable analog.

Canonicalization Circular fingerprints are identical regardless of the ordering of atoms in each
neighborhood. This invariance is achieved by sorting the neighboring atoms according to their
features, and bond features. We experimented with this sorting scheme, and also with applying the
local feature transform on all possible permutations of the local neighborhood. An alternative to
canonicalization is to apply a permutation-invariant function, such as summation. In the interests of
simplicity and scalability, we chose summation.

Circular fingerprints can be interpreted as a special case of neural graph fingerprints having large
random weights. This is because, in the limit of large input weights, tanh nonlinearities approach
step functions, which when concatenated form a simple hash function. Also, in the limit of large
input weights, the softmax operator approaches a one-hot-coded argmax operator, which is anal-
ogous to an indexing operation.

Algorithms 1 and 2 summarize these two algorithms and highlight their differences. Given a finger-
print length L, and F features at each layer, the parameters of neural graph fingerprints consist of
a separate output weight matrix of size F ⇥ L for each layer, as well as a set of hidden-to-hidden
weight matrices of size F ⇥ F at each layer, one for each possible number of bonds an atom can
have (up to 5 in organic molecules).

4 Experiments

We ran two experiments to demonstrate that neural fingerprints with large random weights behave
similarly to circular fingerprints. First, we examined whether distances between circular fingerprints
were similar to distances between neural fingerprint-based distances. Figure 3 (left) shows a scat-
terplot of pairwise distances between circular vs. neural fingerprints. Fingerprints had length 2048,
and were calculated on pairs of molecules from the solubility dataset [4]. Distance was measured
using a continuous generalization of the Tanimoto (a.k.a. Jaccard) similarity measure, given by

distance(x,y) = 1�
X

min(xi, yi)
.X

max(xi, yi) (1)

There is a correlation of r = 0.823 between the distances. The line of points on the right of the plot
shows that for some pairs of molecules, binary ECFP fingerprints have exactly zero overlap.

Second, we examined the predictive performance of neural fingerprints with large random weights
vs. that of circular fingerprints. Figure 3 (right) shows average predictive performance on the sol-
ubility dataset, using linear regression on top of fingerprints. The performances of both methods
follow similar curves. In contrast, the performance of neural fingerprints with small random weights
follows a different curve, and is substantially better. This suggests that even with random weights,
the relatively smooth activation of neural fingerprints helps generalization performance.

3

images [20, 17, 18]. Notably, Fragkiadaki et al. [6] used CNNs to predict and control a moving
ball from an image centered at its coordinates. Mottaghi et al. [21] trained CNNs to predict the 3D
trajectory of an object after an external impulse is applied. Wu et al. [30] used CNNs to parse objects
from images, which were then input to a physics engine that supported prediction and inference.

2 Model

Definition To describe our model, we use physical reasoning as an example (Fig. 1a), and build
from a simple model to the full interaction network (abbreviated IN). To predict the dynamics of a
single object, one might use an object-centric function, fO, which inputs the object’s state, ot, at
time t, and outputs a future state, ot+1. If two or more objects are governed by the same dynamics,
fO could be applied to each, independently, to predict their respective future states. But if the
objects interact with one another, then fO is insufficient because it does not capture their relationship.
Assuming two objects and one directed relationship, e.g., a fixed object attached by a spring to a freely
moving mass, the first (the sender, o1) influences the second (the receiver, o2) via their interaction.
The effect of this interaction, et+1, can be predicted by a relation-centric function, fR. The fR takes
as input o1, o2, as well as attributes of their relationship, r, e.g., the spring constant. The fO is
modified so it can input both et+1 and the receiver’s current state, o2,t, enabling the interaction to
influence its future state, o2,t+1,

et+1 = fR(o1,t, o2,t, r) o2,t+1 = fO(o2,t, et+1)

The above formulation can be expanded to larger and more complex systems by representing them
as a graph, G = hO, Ri, where the nodes, O, correspond to the objects, and the edges, R, to the
relations (see Fig. 1b). We assume an attributed, directed multigraph because the relations have
attributes, and there can be multiple distinct relations between two objects (e.g., rigid and magnetic
interactions). For a system with NO objects and NR relations, the inputs to the IN are,

O = {oj}j=1...NO
, R = {hi, j, rkik}k=1...NR

where i 6= j, 1  i, j  NO , X = {xj}j=1...NO

The O represents the states of each object. The triplet, hi, j, rkik, represents the k-th relation in the
system, from sender, oi, to receiver, oj , with relation attribute, rk. The X represents external effects,
such as active control inputs or gravitational acceleration, which we define as not being part of the
system, and which are applied to each object separately.

The basic IN is defined as,

IN(G) = �O(a(G, X, �R( m(G) ) )) (1)

m(G) = B = {bk}k=1...NR

fR(bk) = ek

�R(B) = E = {ek}k=1...NR

a(G, X, E) = C = {cj}j=1...NO

fO(cj) = pj

�O(C) = P = {pj}j=1...NO

(2)

The marshalling function, m, rearranges the objects and relations into interaction terms, bk =
hoi, oj , rki 2 B, one per relation, which correspond to each interaction’s receiver, sender, and
relation attributes. The relational model, �R, predicts the effect of each interaction, ek 2 E, by
applying fR to each bk. The aggregation function, a, collects all effects, ek 2 E, that apply to each
receiver object, merges them, and combines them with O and X to form a set of object model inputs,
cj 2 C, one per object. The object model, �O, predicts how the interactions and dynamics influence
the objects by applying fO to each cj , and returning the results, pj 2 P . This basic IN can predict
the evolution of states in a dynamical system – for physical simulation, P may equal the future states
of the objects, Ot+1.

The IN can also be augmented with an additional component to make abstract inferences about the
system. The pj 2 P , rather than serving as output, can be combined by another aggregation function,
g, and input to an abstraction model, �A, which returns a single output, q, for the whole system. We
explore this variant in our final experiments that use the IN to predict potential energy.

An IN applies the same fR and fO to every bk and cj , respectively, which makes their relational and
object reasoning able to handle variable numbers of arbitrarily ordered objects and relations. But
one additional constraint must be satisfied to maintain this: the a function must be commutative and

3
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2 FAST APPROXIMATE CONVOLUTIONS ON GRAPHS

In this section, we provide theoretical motivation for a specific graph-based neural network model
f(X, A) that we will use in the rest of this paper. We consider a multi-layer Graph Convolutional
Network (GCN) with the following layer-wise propagation rule:

H(l+1) = �
⇣
D̃� 1

2 ÃD̃� 1
2 H(l)W (l)

⌘
. (2)

Here, Ã = A + IN is the adjacency matrix of the undirected graph G with added self-connections.
IN is the identity matrix, D̃ii =

P
j Ãij and W (l) is a layer-specific trainable weight matrix. �(·)

denotes an activation function, such as the ReLU(·) = max(0, ·). H(l) 2 RN⇥D is the matrix of ac-
tivations in the lth layer; H(0) = X . In the following, we show that the form of this propagation rule
can be motivated1 via a first-order approximation of localized spectral filters on graphs (Hammond
et al., 2011; Defferrard et al., 2016).

2.1 SPECTRAL GRAPH CONVOLUTIONS

We consider spectral convolutions on graphs defined as the multiplication of a signal x 2 RN (a
scalar for every node) with a filter g✓ = diag(✓) parameterized by ✓ 2 RN in the Fourier domain,
i.e.:

g✓ ? x = Ug✓U
>x , (3)

where U is the matrix of eigenvectors of the normalized graph Laplacian L = IN �D� 1
2 AD� 1

2 =
U⇤U>, with a diagonal matrix of its eigenvalues ⇤ and U>x being the graph Fourier transform
of x. We can understand g✓ as a function of the eigenvalues of L, i.e. g✓(⇤). Evaluating Eq. 3 is
computationally expensive, as multiplication with the eigenvector matrix U is O(N2). Furthermore,
computing the eigendecomposition of L in the first place might be prohibitively expensive for large
graphs. To circumvent this problem, it was suggested in Hammond et al. (2011) that g✓(⇤) can be
well-approximated by a truncated expansion in terms of Chebyshev polynomials Tk(x) up to K th

order:

g✓0(⇤) ⇡
KX

k=0

✓0kTk(⇤̃) , (4)

with a rescaled ⇤̃ = 2
�max

⇤ � IN . �max denotes the largest eigenvalue of L. ✓0 2 RK is now a
vector of Chebyshev coefficients. The Chebyshev polynomials are recursively defined as Tk(x) =
2xTk�1(x) � Tk�2(x), with T0(x) = 1 and T1(x) = x. The reader is referred to Hammond et al.
(2011) for an in-depth discussion of this approximation.

Going back to our definition of a convolution of a signal x with a filter g✓0 , we now have:

g✓0 ? x ⇡
KX

k=0

✓0kTk(L̃)x , (5)

with L̃ = 2
�max

L � IN ; as can easily be verified by noticing that (U⇤U>)k = U⇤kU>. Note that
this expression is now K-localized since it is a K th-order polynomial in the Laplacian, i.e. it depends
only on nodes that are at maximum K steps away from the central node (K th-order neighborhood).
The complexity of evaluating Eq. 5 is O(|E|), i.e. linear in the number of edges. Defferrard et al.
(2016) use this K-localized convolution to define a convolutional neural network on graphs.

2.2 LAYER-WISE LINEAR MODEL

A neural network model based on graph convolutions can therefore be built by stacking multiple
convolutional layers of the form of Eq. 5, each layer followed by a point-wise non-linearity. Now,
imagine we limited the layer-wise convolution operation to K = 1 (see Eq. 5), i.e. a function that is
linear w.r.t. L and therefore a linear function on the graph Laplacian spectrum.

1We provide an alternative interpretation of this propagation rule based on the Weisfeiler-Lehman algorithm
(Weisfeiler & Lehmann, 1968) in Appendix A.
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independent per node, which are implemented by mapping the final node representations h
(T )
v , to an

output ov = g(h
(T )
v , lv) for each node v 2 V . To handle graph-level classifications, they suggest to

create a dummy “super node” that is connected to all other nodes by a special type of edge. Thus,
graph-level regression or classification can be handled in the same manner as node-level regression
or classification.

Learning is done via the Almeida-Pineda algorithm (Almeida, 1990; Pineda, 1987), which works by
running the propagation to convergence, and then computing gradients based upon the converged
solution. This has the advantage of not needing to store intermediate states in order to compute
gradients. The disadvantage is that parameters must be constrained so that the propagation step is
a contraction map. This is needed to ensure convergence, but it may limit the expressivity of the
model. When f(·) is a neural network, this is encouraged using a penalty term on the 1-norm of the
network’s Jacobian. See Appendix A for an example that gives the intuition that contraction maps
have trouble propagating information across a long range in a graph.

3 GATED GRAPH NEURAL NETWORKS

We now describe Gated Graph Neural Networks (GG-NNs), our adaptation of GNNs that is suitable
for non-sequential outputs. We will describe sequential outputs in the next section. The biggest mod-
ification of GNNs is that we use Gated Recurrent Units (Cho et al., 2014) and unroll the recurrence
for a fixed number of steps T and use backpropagation through time in order to compute gradients.
This requires more memory than the Almeida-Pineda algorithm, but it removes the need to constrain
parameters to ensure convergence. We also extend the underlying representations and output model.

3.1 NODE ANNOTATIONS

In GNNs, there is no point in initializing node representations because the contraction map constraint
ensures that the fixed point is independent of the initializations. This is no longer the case with
GG-NNs, which lets us incorporate node labels as additional inputs. To distinguish these node labels
used as inputs from the ones introduced before, we call them node annotations, and use vector x to
denote these annotations.

To illustrate how the node annotations are used, consider an example task of training a graph neural
network to predict whether node t can be reached from node s on a given graph. For this task, there
are two problem-related special nodes, s and t. To mark these nodes as special, we give them an
initial annotation. The first node s gets the annotation xs = [1, 0]>, and the second node t gets the
annotation xt = [0, 1]>. All other nodes v have their initial annotation set to xv = [0, 0]>. Intuitively,
this marks s as the first input argument and t as the second input argument. We then initialize the
node state vectors h

(1)
v using these label vectors by copying xv into the first dimensions and padding

with extra 0’s to allow hidden states that are larger than the annotation size.

In the reachability example, it is easy for the propagation model to learn to propagate the node annota-
tion for s to all nodes reachable from s, for example by setting the propagation matrix associated with
forward edges to have a 1 in position (0,0). This will cause the first dimension of node representation
to be copied along forward edges. With this setting of parameters, the propagation step will cause all
nodes reachable from s to have their first bit of node representation set to 1. The output step classifier
can then easily tell whether node t is reachable from s by looking whether some node has nonzero
entries in the first two dimensions of its representation vector.

3.2 PROPAGATION MODEL

The basic recurrence of the propagation model is

h(1)
v = [x>

v ,0]> (1)

a(t)
v = A>

v:

h
h

(t�1)
1

> . . .h
(t�1)

|V|
>
i>

+ b (2)

zt
v = �

⇣
Wza(t)

v + Uzh(t�1)
v

⌘
(3)

rt
v = �

⇣
Wra(t)

v + Urh(t�1)
v

⌘
(4)

g
h

(t)
v = tanh

⇣
Wa(t)

v + U
⇣
rt

v � h(t�1)
v

⌘⌘
(5)

h(t)
v = (1 � zt

v) � h(t�1)
v + zt

v � g
h

(t)
v . (6)

3

and proposed a first unifying framework for specifying embedding methods: Mes-
sage Passing Neural Networks

8
RGilmer, Schoenholz, Riley, Vinyals, Dahl. Neural Message Passing for Quantum Chemistry, Neurips, 1263–1272 (2017)

38 / 76



Message Passing Neural Networks (MPNNs)

▸ Liberally interpreted, Gilmer et al. proposed an inductive way of defining vertex
and graph embeddings.▸ Indeed, one has initial vertex embeddings

ξ ∶ G → (V → Rd) ∶ (G , v) ↦ νG(v)
for some encoding of the vertex label in νG(v) ∈ Σ in Rd .

▸ Then, let ξ′ ∶ G → (V → Rd ′) be an old vertex embedding. A new vertex embedding
ξ ∶ G → (V → Rd) can be obtained by:

(G , v) ↦ ξ(G , v) ∶= Update´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
any function
R2d′→Rd

(ξ′(G , v), ∑
u∈NG(v)

ξ′(G ,u))
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Message Passing Neural Networks (MPNNs)

▸ Finally, one can also construct graph embeddings ξ ∶ G → Rd from a vertex embed-
ding ξ′ ∶ G → (V → Rd ′) as follows:

G ↦ ξ(G) ∶=

Readout´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
any function
Rd′→Rd

(

∑
v∈VG

ξ′(G , v)

)

Easy exercise: The GNNs 101 we have seen before are MPNNs.

GNN 101

Layer-based vector embedding computation

F(0) ∶= Initial vertex labels F(t) ∶= ‡ �F(t−1)W(t)
1 +AF(t−1)W(t)

2 +B(t)�
� ‡ is a non-linear activation function R→ R;� A is adjacency matrix in Rn×n of a graph;� F(t) vertex embedding in Rn×d computed in layer t; and� learnable weight matrices W(t)

1 ,W(t)
2 ∈ Rd×d and bias B(t) ∈ Rn×d .

F(t)v● ∶= ‡
��F(t−1)v● W(t)

1 + �
u∈NG(v)

F(t−1)u● W(t)
2 + b(t)�� F ∶= ‡

�� �v∈VG

F(L)W + b
��
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Let’s put on our database glasses

(you can find those under your seats).
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MPNNs as a language

We can turn MPNNs into a specification language for vertex and graph embeddings.

▸ We fix the output space Y to be ⋃d Rd .▸ We take two variables x1 and x2.▸ Inductively define MPNN expressions ϕ.

Each expression ϕ comes with:▸ a dimension dim(ϕ) ∈ N and▸ a set of free variables fv(ϕ).▸ Semantics: p-vertex embeddings ξϕ ∶ G → (Vp → Y) (p determined by number
free variables, output space Rd by dimension of ϕ).
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▸ Semantics: p-vertex embeddings ξϕ ∶ G → (Vp → Y) (p determined by number
free variables, output space Rd by dimension of ϕ).
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Atomic expressions

▸ Initially, atomic MPNN expressions are of the form

ϕ(xi) ∶= labj(xi)
with free variable xi , j = 1,2,3, . . . and of dimension 1.

For example, let
ϕ(x1) ∶= Lab2(x1)

and G a graph with vertex labelling νG ∶ VG → R3. The corresponding semantics is the
vertex embedding

ξϕ ∶ (G , v) ↦ (νG(v))2 ∈ R
i.e., the second component of νG(v) ∈ R3.
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Function application

We close under application of functions coming from some set Ω.

▸ Consider MPNN expressions ϕ1(xi), . . . , ϕ`(xi) with free variable xi and of dimen-
sion d1, . . . ,d`, respectively.▸ Take a function F ∶ Rd1+⋯+d` → Rd in Ω. Then,

ϕ(xi) ∶= F(ϕ1(xi), . . . , ϕ`(xi))
is again an MPNN expression, of dimension d and free variable xi .

Example:
ϕ(x1) ∶= ReLU(ϕ′(x1)) with ReLU(x) ∶= max{0, x} in Ω

with semantics
ξϕ ∶ (G , v) ↦ ReLU(ξϕ′(G , v))
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Neighborhood aggregation

We close under restricted application of aggregation functions from a set Θ.
▸ Let ϕ1(x1) and ϕ2(x2) expressions with free variables x1 and x2 of dimension d1

and d2, respectively.▸ Let θθθ be any aggregate function from bags of elements in Rd1+d2 to Rd .▸ Then,
ϕ(x1) ∶= aggθθθx2(ϕ1(x1), ϕ2(x2) ∣ E(x1, x2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

edge relation

)
is an MPNN expression of dimension d and free variable x1 (similarly with roles of
x1 and x2 reversed.)

Example:
ϕ(x1) ∶= aggsumx2 (ϕ1(x1), ϕ2(x2)∣E(x1, x2))

and corresponding embedding
ξϕ ∶ (G , v) ↦ ∑

(v ,u)∈EG

(ξϕ1(G , v), ξϕ2(G ,u))
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Global aggregation

We can also express graph embeddings.

▸ Let ϕ′(x1) be an MPNN expression with free variable x1 and of dimension d ′.
▸ Let θθθ be an aggregation function from bags of elements in Rd ′ to Rd .▸ Then,

ϕ ∶= aggθθθx1(ϕ′(x1))
is an MPNN expression of dimension d and no free variables.

Example:
ϕ ∶= aggsumx1 (ϕ1(x1))

and corresponding embedding
ξϕ ∶ G ↦ ∑

v∈VG

(ξϕ1(G , v)
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MPNN(Ω,Θ)

▸ We have thus defined a language MPNN(Ω,Θ).▸ A very limited fragment of calculus with aggregates.9▸ It differs from classical MPNNs because in those one restricts how function appli-
cation and aggregation interleave:

ϕ(t)(x1) ∶= F(t)(ϕ(t−1)(x1), aggθθθ(t)x2 (ϕ(t−1)(x2) ∣ E(x1, x2)))

9
RHella, Libkin, Nurmonen and Wong, Logics with aggregate operators, JACM 2001.
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Embedding methods

▸ Existing architectures can be easily cast as MPNN(Ω,Θ) expressions, due to more
flexible definition when compared to classical MPNNs.

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet ...
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs

Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs ...
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs ...
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MPNN(Ω,Θ)

What about separation power of MPNN(Ω,Θ)?
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Color refinement

Color refinement: Iteratively computes a coloring of vertices of a graph:

1. Initialization: all vertices have their original colors (labels)
2. Refinement Step: two vertices v and w get different colors if the there is

a color c such that v and w have a different number of
neighbors of color c.

This process terminates and a graph will get a color based on the multiset of colors of
all its vertices.

ρ(color refinement) contains pairs of graphs/vertices with the same coloring.

50 / 76



Color refinement

Color refinement: Iteratively computes a coloring of vertices of a graph:

1. Initialization: all vertices have their original colors (labels)
2. Refinement Step: two vertices v and w get different colors if the there is

a color c such that v and w have a different number of
neighbors of color c.

This process terminates and a graph will get a color based on the multiset of colors of
all its vertices.

ρ(color refinement) contains pairs of graphs/vertices with the same coloring.

50 / 76



MPNN(Ω,Θ): Separation power

Theorem
For any Ω and Θ, ρ0/1(color refinement) ⊆ ρ0/1(MPNN(Ω,Θ)).
▸ For MPNNs, this was shown in the seminal papers10,11 and then expanded.12▸ This can also be shown using the correspondence

ρ(color refinement) = ρ(guarded C2)
and elimination of function and aggregation functions by detour to infinitary coun-
terparts of guarded C2.13

10
RXu, Hu, Leskovec, Jegelka. How Powerful are Graph Neural Networks? ICLR (2019)

11
RMorris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI

(2019)
12
RG* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022

13
RHella, Libkin, Nurmonen and Wong, Logics with aggregate operators, JACM 2001.
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MPNN(Ω,Θ): Separation power

Which functions are needed to match color refinement in separation power?

Theorem
if Ω contains concatenation, linear combinations and non-linear activation functions and
Θ consists of summation, then

ρ0/1(color refinement) = ρ0/1(MPNN(Ω,Θ))
▸ Shown by explicit construction of GNNs 101.14

14
RMorris, Ritzert, Fey, Hamilton, Lenssen, Rattan, Grohe. Weisfeiler and Leman Go Neural: Higher-Order Graph Neural Networks. AAAI

(2019)
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MPNN(Ω,Θ): Approximation power

Theorem
For sufficiently rich sets Ω of functions and compact C sets of G, MPNN(Ω, sum) canC-approximate any embedding Ψ ∶ G → R satisfying ρ(color refinement) ⊆ ρ({Ψ}).
▸ For example: Ω is rich enough when it is mlp-closed. That is, for any q ∈ N, any

multilayered perceptron15 mlp ∶ Rq → R and any functions f1, . . . , fq already in Ω,

mlp(f1, . . . , fq)
is also in F .

15MLPs: Layered architectures F(t) ∶= σ(W(t)F(t−1) + b(t)), F(0) ∶= x with learnable weight matrices W(t), bias vectors b(t), and activation
functions σ.
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MPNN(Ω,Θ): True expressiveness

Can we get rid of compact domain?

Assuming graphs with discrete labels.16

Theorem
MPNN(Ω,Θ) can express any unary query expressible in graded modal logic.

GNNs 101 already suffice for this.

Theorem
If a first-order logic unary query is expressible in MPNN(Ω,Θ), then it is a query ex-
pressible in graded modal logic.

16
RBarceló, Kostylev, Monet, Pŕez, Reutter and Silva. The Logical Expressiveness of Graph Neural Networks. ICLR 2020
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MPNN(Ω,Θ): Normal forms

▸ Can any MPNN(Ω,Θ) be converted into a “normal form” MPNN(Ω,Θ)
ϕ(t)(x1) ∶= F(t)(ϕ(t−1)(x1), aggθθθ(t)x2 (ϕ(t−1)(x2) ∣ E(x1, x2)))

▸ Important for implementation purposes!▸ Partial results when Ω consists of linear combinations and activation functions σ,
and Θ is summation.17

Theorem▸ Every MPNN(Ω, sum) is equivalent to a normal form MPNN if σ = ReLU.▸ On compact domain C, normal form ReLU MPNNs C-approximate embeddings in
MPNN(Ω, sum).

17
RG*, Steegmans and Van den Bussche: On the Expressive Power of Message-Passing Neural Networks as Global Feature Map Transformers.

FoIKS 2022
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End of story?

▸ Many other embedding methods exist which are not in MPNN(Ω,Θ).
Only “simple” GNNs are MPNNs :-(

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet ...
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs

Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs ...
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs ...

How to analyze all other embedding methods?
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4. Embedding Language #2:
GEL(Ω,Θ)

and its finite variable fragments
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Higher-order MPNNs

We expand the language of MPNN(Ω,Θ): GEL(Ω,Θ)
1. More variables x1, x2, . . .;

2. More atomic MPNNs;

3. More general function and aggregation applications.
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Atomic GEL expressions

Label: Labj(xi) of dimension 1, free variable xi ;
Edge: E(xi , xj) of dimension 1, free variables xi and xj ;
Equality: 1[xi op xj] with op ∈ {=,≠}, of dimension 1 and free variables xi and xj .

Example:
ϕ(x1, x2) ∶= E(x1, x2) and ψ(x1, x2) ∶= 1[x1 op x2]

and corresponding 2-vertex embeddings

ξϕ ∶ (G , v ,w) ↦ ⎧⎪⎪⎨⎪⎪⎩
1 if (v ,w) ∈ EG
0 otherwise.

and ξψ ∶ (G , v ,w) ↦ ⎧⎪⎪⎨⎪⎪⎩
1 if v opw
0 otherwise.
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Function Application

We close GEL under function applications with function in Ω.
▸ As before, Ω still set of functions Rd ′ → Rd .

▸ Consider expressions ϕ1(x1), . . . , ϕ`(x`) with free variables xi and of dimension
d1, . . . ,d`, respectively.▸ Take a function F ∶ Rd1+⋯+d` → Rd in Ω. Then,

ϕ(x) ∶= F(ϕ1(x1), . . . , ϕ`(x`))
is again an MPNN expression, of dimension d and free variables x ∶= x1 ∪⋯ ∪ x`.

Example:
ϕ(x1, x2, x3) ∶= f×(E(x1, x2), f×(E(x1, x2),E(x2, x3)))

with f× ∶ R2 → R ∶ (a,b) → a × b. Then, we obtain a 3-vertex embedding

ξϕ ∶ (G ,u, v ,w) ↦ ⎧⎪⎪⎨⎪⎪⎩
1 (u, v), (u,w), and (v ,w) ∈ EG
0 otherwise.
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Aggregation

We close GEL under aggregation with aggregations in Θ.

▸ Let ϕ1(x,y) and ϕ2(x,y) expressions with free variables (x,y) and of dimension
d1 and d2, respectively.▸ Let θθθ be any aggregate function from bags of elements in Rd1 to Rd .▸ Then,

ϕ(x) ∶= aggθθθy(ϕ1(x,y) ∣ ϕ2(x,y))
is an expression of dimension d and free variables x.

Semantics
ξϕ ∶ (G ,v) ↦ θθθ({{ξϕ1(G ,v,w) ∣ w ∈ V p

G s.t. ξϕ2(G ,v,w) ≠ 0}}).
with p ∶= ∣y∣.
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Fragments of GEL(Ω,Θ)

Important special fragments:▸ GELk(Ω,Θ): only k variables x1, . . . , xk may be used;

▸ GGEL2(Ω,Θ): guarded fragment of GEL2 in which aggregation and function ap-
plication are restricted = MPNN(Ω,Θ)
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Validation

MPNN(Ω,Θ) GEL2(Ω,Θ) GEL3(Ω,Θ) GELk(Ω,Θ)
GraphSage GINs GCNs SGNs

GATs GatedGCNs extended GINs 2-IGNs ChebNet ...
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs

Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs ...
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs ...

For many of these GNNs, their layer definitions translate naturally into expressions in
our language.
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What can we say about separation power of GELk(Ω,Θ)?
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k-dimensional Weisfeiler-Leman

The k-dimensional Weisfeiler-Leman algorithm:18,19 Iteratively computes a coloring of
k-tuples of vertices of a graph
Intuitively, it can be seen as color refinement on a k-fold product of a graph
Again, has been subject to many theoretical studies and is used in graph isomorphism
algorithms

ρ(k-WL) contains pairs of k-tuples of vertices with the same k-WL coloring

It is known:20 ρ(CR) ⊇ ρ(1-WL) ⊋ ρ(2-WL) ⊋ ρ(3-WL) ⊋ ⋯ ⊋ ρ(graph iso).
18
RGrohe. The logic of graph neural networks LICS, 1–17 (2021)

19
RMorris, Lipman, Maron, Rieck, Kriege, Grohe, Fey, Borgwardt. Weisfeiler and Leman go Machine Learning: The Story So Far. CoRR

abs/2112.09992 (2021)
20
RCai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. Comb. 12(4):389-410 (1992)
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Separation power of GELk(Ω,Θ)

Theorem
For any Ω and Θ, ρ(k-WL) ⊆ ρ(GELk+1(Ω,Θ))
Proofs21 rely on connections to logics and techniques from database theory22,23

Theorem
if Ω contains concatenation, linear combinations and non-linear activation functions and
Θ consists of summation, then ρ(k-WL) = ρ(GELk+1(Ω,Θ))
Approximation properties can be derived as well.

21
RG., Reutter, Expressiveness and approximation properties of GNNs, ICLR (2022)

22
RHella, Libkin, Nurmonen, Wong: Logics with Aggregates, JACM, 48(4): 880-907 (2001)

23
RCai, Fürer, Immerman: An optimal lower bound on the number of variables for graph identification. Comb. 12(4):389-410 (1992)
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Back to ML

color refinement 1-WL 2-WL k-WL

GraphSage GINs GCNs SGNs
GATs GatedGCNs extended GINs 2-IGNs ChebNet ...
Walk GNNs 2WL-GNNs ring-GNNs 1-Dropout GNNs

Id-aware GNNs CayleyNet 3-IGNs 2-FGNNs ...
kWL-GNNs k-FGNNs (k+1)-IGNs GSNs k-Dropout GNNs ...
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6. What’s Next?
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Fine grained analysis

1. Impact of different aggregation functions on expressive power.

▸ In initial work is investigated when summation MPNNs can be approximated by
mean or max MPNNs, and vice versa.24

2. Quantitative approximation results.

▸ What is complexity of embeddings needed to approximate within ε?

24
RRosenbluth, Tönshoff and Grohe: Some Might Say All You Need Is Sum, arxiv 2023.
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Lower bounds

Technique presented only gives upper bounds. Lower bounds, still case by case analysis.

3. Can we find “reductions” between embedding methods that preserve expressive power.

▸ This may help to show lower bounds by simulating “hard” embedding methods.

4. Fining the minimal k in GELk(Ω,Θ) needed for your method.

▸ The lower k the better the upper bound.▸ (Semantic) treewidth notion for GEL expressions?25▸ Related to work on FAQ-AIs when functions and aggregations can be seen as se-
miring operators.26▸ We need to accommodate for non-linear activation functions.

25
RG* and Reutter. Expressiveness and Approximation Properties of GNNs. ICLR 2022

26
RKhamis, Ngo and Rudra: "FAQ: Questions Asked Frequently", PODS 2016
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Hierarchy

5. Other hierarchies than Weisfeiler-Leman hierarchy.

▸ Some embedding methods can be cast in GELk(Ω,Θ) but are not as expressive as(k − 1)-WL.▸ E.g., Reconstruction GNNs, ESANs, ID-Aware GNNs, Nested GNNs, Dropout-
GNNs.▸ By imposing further restrictions on expressions in GELk(Ω,Θ) a more fine-grained
hierarchy can be obtained. 27, 28

▸ More work needed is to understand corresponding separation power. For example,
hom count characterizations.

27
RQian, Rattan, G*, Morris and Niepert. Ordered Subgraph Aggregation Networks. NeurIPS 2022

28
RRattan and Seppelt: Weisfeiler-Leman and Graph Spectra. SODA 2023
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Views

6. We can see embedding methods as views.

▸ Query rewriting using such views?▸ View embedding: First embed graph using complex fixed embedding, followed by
simple learnable embedding of the view. 29

▸ Other?

29
RBarcel’o, G*, Reutter, Ryschkov: Graph Neural Networks with Local Graph Parameters. NeurIPS 2021
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Varia

▸ Generalization properties (VC dimension, Rademacher complexity)

▸ Semi-ring valued embeddings and learning?

▸ Zero-one laws of embeddings 30

▸ Continuous WL 31

▸ More connections with logic and descriptive complexity.32

30
RAdam-Day, Iliant and Ceylan: Zero-One Laws of Graph Neural Networks, arxiv 2023

31
RBöker, Levie, Huang, Villar and Morris: Fine-grained Expressivity of Graph Neural Networks, arxiv 2023

32
RGrohe.The Descriptive Complexity of Graph Neural Networks, arxiv 2023
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Relational

And of course, as also mentioned in Jure’s keynote:

Relational embeddings.

▸ Initial work by considering multi-relation graphs and analyzing power.33

33
RBarceló, Galkin, Morris, Orth: Weisfeiler and Leman Go Relational Learning on Graphs (LoG) 2022.
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Thanks to

▸ The GEL(Ω,Θ) language and use for graph embeddings is heavily influenced by
earlier work on the expressive power of linear algebra and matrix query langua-
ges together with Robert Brijder, Thomas Muñoz, Cristian Riveros, Jan Van den
Bussche, and Domagoj Vrgoč.▸ Transferral to ML: Pablo Barceló, Martin Grohe, Christopher Morris, Gaurav Rattan,
Juan Reutter, Jasper Steegmans an Jan Van den Bussche.
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▸ There is interest in ML community for these kind of theoretical analyses (but pre-
ferably accompanied with some experiments).▸ Great opportunity for our community to contribute.▸ So far, these papers are in ML conference. Would be great to also have some at
PODS or ICDT!▸ Maybe you got some inspiration for doing so :-)
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