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Abstract
We cast neural networks defined on graphs as
message-passing neural networks (MPNNs) to
study the distinguishing power of different classes
of such models. We are interested in when certain
architectures are able to tell vertices apart based
on the feature labels given as input with the graph.
We consider two variants of MPNNS: anonymous
MPNNs whose message functions depend only
on the labels of vertices involved; and degree-
aware MPNNs whose message functions can ad-
ditionally use information regarding the degree of
vertices. The former class covers popular graph
neural network (GNN) formalisms for which the
distinguished power is known. The latter covers
graph convolutional networks (GCNs), introduced
by Kipf and Welling, for which the distinguishing
power was unknown. We obtain lower and upper
bounds on the distinguishing power of (anony-
mous and degree-aware) MPNNs in terms of the
distinguishing power of the Weisfeiler-Lehman
(WL) algorithm. Our main results imply that
(i) the distinguishing power of GCNs is bounded
by the WL algorithm, but they may be one step
ahead; (ii) the WL algorithm cannot be simulated
by “plain vanilla” GCNs but the addition of a
trade-off parameter between features of the vertex
and those of its neighbours (as proposed by Kipf
and Welling) resolves this problem.

1. Introduction
A standard approach to learning tasks on graph-structured
data, such as vertex classification, edge prediction, and
graph classification, consists of the construction of a repre-
sentation in some metric space of vertices and graphs that
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captures their structural information. Graph Neural Net-
works (GNNs) are currently considered the state-of-the art
approach for learning such representations. Many variants
of GNNs exist but they all follow a similar strategy. Each
vertex is initially associated with a feature vector. This is
followed by an iterative neighbourhood-aggregation scheme
where each vertex aggregates feature vectors of its neigh-
bours, possibly combines this with its own current feature
vector, to finally obtain its new feature vector. After a num-
ber of iterations, each vertex is then represented by the
resulting feature vector. We refer to Zhou et al. (2018) and
Wu et al. (2019b) for extensive surveys on GNNs.

The adequacy of GNNs for graph learning tasks is directly
related to their distinguishing power which refers to the abil-
ity of GNNs to distinguish vertices and graphs in terms of
the computed representation. That is, when two vertices are
represented by the same feature vector, they are considered
the same with regards to any subsequent feature-based task.

Only recently a study of the distinguishing power of GNN
variants has been initiated. In Xu et al. (2019) and Morris
et al. (2019) the distinguishing power of GNNs is linked
to that of the classical Weisfeiler-Lehman (WL) algorithm.
The WL algorithm starts from an initial vertex colouring of
the graph. Then, similarly as GNNs, the WL algorithm re-
cursively aggregates the colouring of neighbouring vertices.
In each iterative step, a vertex colouring is obtained that
refines the previous one. The WL algorithm stops when no
further refinement is obtained. The distinguishing power of
the WL algorithm is well understood (Arvind et al., 2017).

More precisely, in Xu et al. (2019) and Morris et al. (2019)
it is shown that for any input graph if vertices can be dis-
tinguished by a GNN then they can be distinguished by the
WL algorithm. Conversely, Graph Isomorphism Networks
(GINs) were proposed in Xu et al. (2019) that can match the
distinguishing power of the WL algorithm, on any graph.
The construction of GINs relies on multi-layer perceptrons
and their ability to approximate arbitrary functions. Morris
et al. (2019) show that the distinguishing power of the WL
algorithm can also be matched using the simpler Graph-
SAGE architecture (Hamilton et al., 2017), provided that
the input graph is fixed. We refer to Sato (2020) for a survey
on the expressive power of GNNs.
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In this paper we start from the observation that many popular
GNNs fall outside of the classes of GNNs considered in Xu
et al. (2019) and Morris et al. (2019). Prominent examples of
such GNNs are the Graph Convolutional Networks (GCNs)
from Kipf & Welling (2017). Such GCNs still deploy an
iterative neighbourhood aggregation of features but they
additionally take into account vertex-degree information.
Given the popularity of GCNs, natural questions are: “How
do GCNs relate to the WL algorithm?” and “What is the
distinguishing power of GCNs?” We will answer these
questions in this paper.

To do so, we study the distinguishing power of Message-
Passing Neural Network (MPNNs), introduced by Gilmer
et al. (2017), which are known to encompass GCNs and
many other GNN formalisms. As we will see, formalising
GNN architectures in the common MPNN framework al-
lows for a fair comparison of their expressive power. More
precisely, in this paper we consider two general classes
of MPNNs depending on what information is used during
message-passing: anonymous MPNNs that do not use de-
gree information, and degree-aware MPNNs that do use
degree information. The former class covers the GNNs stud-
ied in Xu et al. (2019) and Morris et al. (2019), the latter
class covers GCNs (Kipf & Welling, 2017), among others.

To understand the distinguishing power of MPNNs we use
the WL algorithm as a yardstick. We particularly pay atten-
tion to the correspondence between the number of iterations
of the WL algorithm and the number of rounds of computa-
tion1 of MPNNs. Since it is known that too many rounds of
computation results in over-smoothing and prediction degra-
dation (Wu et al., 2019a; Li et al., 2018; Oono & Suzuki,
2020), in practice a small number (often 3) of rounds is used.
It is therefore important to understand the distinguishing
power of MPNNs – and hence also of GCNs – in terms of
their number of rounds.

Contributions. First, we focus on the power of general
MPNN architectures and the number of rounds required to
distinguish vertices. Slightly generalising Xu et al. (2019)
and Morris et al. (2019), we show that for anonymous
MPNNs the number of rounds coincides with the number of
iterations for the WL algorithm (Proposition 8). By contrast,
to simulate degree-aware MPNNs an extra iteration in the
WL algorithm is needed (Proposition 14).

Second, we focus on variants of particular MPNN architec-
tures that can be found in the literature. As an example of
anonymous MPNNs we consider the GNNs from Morris
et al. (2019) (Theorem 11). We show that for this architec-
ture the number of rounds still coincides with the number
of iterations in the WL algorithm. This result refines the

1Roughly speaking, the number of rounds of an MPNN corre-
sponds to the number of (hidden) layers in a GNN.

result in Morris et al. (2019). In their proof, to simulate t
iterations of the WL algorithm 2t rounds of computation
are required. We only need t rounds of computation and we
need considerably less parameters.

As an example of degree-aware MPNNs we consider the
GCNs of Kipf & Welling (2017). We show that the WL
algorithm cannot be simulated by the GCNs from Kipf
& Welling (2017) (Proposition 18). This observation is
somewhat contradictory to the belief that GCNs can be
seen as a “continuous generalisation” of the WL algorithm.
However, by introducing a learnable trade-off parameter
between features of the vertex and those of its neighbours,
the simulation of the WL algorithm can be achieved by
GCNs (Proposition 19). This minor relaxation of GCNs
was already suggested in Kipf & Welling (2017) based on
empirical results. Our simulation result thus provides a
theoretical justification of this parameter.

We complement these results with some experiments. From
our theoretical results we extracted two interesting features.

1. Recall that in practice the number of rounds is limited
(e.g. 3) and that degree-aware MPNNs are succinct by
one round of computation. Will adding vertex degree
information improve anonymous architectures?

2. In the example of anonymous MPNN architectures, to
simulate the WL algorithm we obtained more compact
architectures. How do these compact architectures
compare to previous proposals in terms of accuracy?

We experimentally verify that these two features have a
positive impact on the accuracy. Thus as a corollary of our
theoretical results we provide experimental justification to
take these features into consideration.

Detailed proofs of our results, experiments and additional
information can be found in the supplementary material.

2. Preliminaries
Let A denote the set of all algebraic numbers2; Q, the set
of all rational numbers; Z, the set of all integer numbers;
N, the set of all natural numbers including zero, i.e., N =
{0, 1, 2, . . . }. We write S+ to denote the subset of numbers
from S which are strictly positive, e.g., N+ = N \ {0}. We
use {} and {{}} to indicate sets and multisets, respectively.

Labelled graphs. LetG = (V,E) be an undirected graph
consisting of n ∈ N vertices. Without loss of generality
we assume that V = {1, 2, . . . , n}. Given a vertex v ∈ V ,

2We use algebraic numbers instead of real or rational numbers
because algebraic numbers form a countable set and are closed
under taking square roots. These two properties are needed to
formally see the WL algorithm as an anonymous MPNN and to
model GCNs, respectively.
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we denote by NG(v) its set of neighbours, i.e., NG(v) :=
{u | {u, v} ∈ E}. Furthermore, the degree of a vertex v,
denoted by dv, is the number of vertices in NG(v). With a
labelled graph (G,ννν) we mean a graph G = (V,E) whose
vertices are labelled using a function ννν : V → Σ for some
set Σ of labels. We denote by νννv the label of v ∈ V .

Henceforth we fix a labelled graph (G,ννν) with G = (V,E)
and denote by A the adjacency matrix (of G). We denote by
D the diagonal matrix such that Dvv = dv for each v ∈ V .
We will assume that G does not have isolated vertices and
that there are no self-loops. For a matrix B we denote by
Bi the i-th row of B. If B is a matrix of dimension n×m,
we represent the rows of B by Bv , for v ∈ V .

We will identify Σ with elements (row vectors) in As for
some s ∈ N+. In this way, a labelling `̀̀ : V → Σ can be
regarded as a matrix in An×s and `̀̀v corresponds to the v-th
row in that matrix. Conversely, a matrix L ∈ An×s can be
regarded as the vertex labelling that labels v with the row
vector Lv . We use these two interpretations interchangeably.

Given a matrix L ∈ An×s and a matrix L′ ∈ An×s′ we
say that the vertex labelling L′ is coarser than the vertex
labelling L, denoted by L v L′, if for all v, w ∈ V , Lv =
Lw ⇒ L′v = L′w. The vertex labellings L and L′ are
equivalent, denoted by L ≡ L′, if L v L′ and L′ v L
hold. In other words, L ≡ L′ if and only if for all v, w ∈ V ,
Lv = Lw ⇔ L′v = L′w.

Weisfeiler-Lehman labelling. Of particular importance
is the labelling obtained by colour refinement, also known
as the Weisfeiler-Lehman algorithm (or WL algorithm, for
short) (Weisfeiler & Lehman, 1968; Grohe, 2017). The
WL algorithm constructs a labelling, in an iterative fash-
ion, based on neighbourhood information and the initial
vertex labelling. More specifically, given (G,ννν), the WL
algorithm initially sets `̀̀(0) := ννν. Then, the WL algo-
rithm computes a labelling `̀̀(t), for t > 0, as follows:
`̀̀(t)v := HASH((`̀̀(t−1)v , {{`̀̀(t−1)u | u ∈ NG(v)}})), where
HASH bijectively maps the above pair, consisting of (i) the
previous label `̀̀(t−1)v of v; and (ii) the multiset {{`̀̀(t−1)u |
u ∈ NG(v)}} of labels of the neighbours of v, to a label in
Σ which has not been used in previous iterations. When
the number of distinct labels in `̀̀(t) and `̀̀(t−1) is the same,
the WL algorithm terminates. Termination is guaranteed
in at most n steps (Immerman & Lander, 1990). By appro-
priately generalising the WL algorithm (Grohe, 2020) our
results carry over to directed edge-labelled graphs. For ease
of presentation, we do not detail this further in this paper.

3. Message Passing Neural Networks
We start by describing message passing neural networks
(MPNNs) for deep learning on graphs, introduced by Gilmer

et al. (2017). Roughly speaking, in MPNNs, vertex labels
are propagated through a graph according to its connectivity
structure: Given a labelled graph (G,ννν) and a computable
function f : V → A an MPNN computes a vertex labelling
`̀̀ : V → As, for some s ∈ N+. We introduce the function
f to explicitly describe additional vertex parameters in the
message functions.3 The vertex labelling computed by an
MPNN is computed in a finite number of rounds T . After
round 0 ≤ t ≤ T the labelling is denoted by `̀̀(t). We next
detail how `̀̀(t) is computed. For t = 0, we let `̀̀(0) := ννν.
Then, for every round t = 1, 2, . . . , T , we define `̀̀(t) : V →
Ast , as follows:

`̀̀(t)v := UPD(t)
(
`̀̀(t−1)v ,∑

u∈NG(v)

MSG(t)(`̀̀(t−1)v , `̀̀(t−1)u , f(v), f(u))
)
∈ Ast .

That is, each vertex v ∈ V receives messages from its neigh-
bours which are subsequently aggregated. Formally, the
function MSG(t) receives as input f applied to two vertices
v and u, and the corresponding labels of these vertices from
the previous iteration `̀̀(t−1)v and `̀̀(t−1)u , and outputs a la-
bel.4 Then, for every vertex v, we aggregate by summing
all such labels for every neighbour u. Finally, the function
UPD(t) updates the result using also the current label `̀̀(t−1)v .
After round T , we define the final labelling `̀̀ : V → As as
`̀̀v := `̀̀(T )

v for every v ∈ V .

The role of the function f in this paper is to distinguish
between two classes of MPNNs5: those whose message
functions only depend on the labels of the vertices involved,
in which case we set f to the zero function f(v) = 0, for all
v ∈ V ; and those whose message functions depend on the
labels and on the degrees of the vertices involved, in which
case we set f to the degree function f(v) = dv, for all v ∈
V . We will refer to the former class as anonymous MPNNs
and to the latter as degree-aware MPNNs. These classes are
denoted byManon andMdeg, respectively. Notice that the
anonymous class does not use degree information explicitly
(i.e. in the message function). However, we do not impose
any semantic restriction disallowing anonymous MPNNs
to learn or compute the degree information, and thus use
degree information in an implicit way.

3.1. Examples

Example 1 (GNN architectures). We first consider the
graph neural network architectures (Hamilton et al., 2017;

3In the formalisation by Gilmer et al. (2017) it is not always
clear on which parameters the message functions may depend on.

4Notice that this is a feedforward model. The layers are ordered
and every layer depends only on the previous one.

5In general, one could consider any function f .
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Morris et al., 2019) defined by:

L(t) := σ
(
L(t−1)W

(t)
1 + AL(t−1)W

(t)
2 + B(t)

)
, (1)

where L(t) is the matrix in An×st consisting of the n rows
`̀̀(t)v ∈ Ast , for v ∈ V , A ∈ An×n is the adjacency matrix
of G, W(t)

1 and W
(t)
2 are (learnable) weight matrices in

Ast−1×st , B(t) is a bias matrix in An×st consisting of n
copies of the same row b(t) ∈ Ast , and σ is a non-linear
activation function. We can regard this architecture as an
MPNN. Indeed, (1) can be equivalently phrased as the archi-
tecture which computes, in round t, for each vertex v ∈ V
the label defined by:

`̀̀(t)v := σ

`̀̀(t−1)v W
(t)
1 +

∑
u∈NG(v)

`̀̀(t−1)u W
(t)
2 + b(t)

 ,

where we identified the labellings with their images, i.e., a
row vector in Ast−1 or Ast . To phrase this as an MPNN, it
suffices to define for each x and y in Ast−1 , each v ∈ V
and u ∈ NG(v), and each t ≥ 1:

MSG(t)(x,y,−,−) := yW
(t)
2 ,

UPD(t)(x,m) := σ(xW
(t)
1 + m + b(t))

(2)

We write − instead of 0 to emphasise that the message
functions use the zero function f(v) = 0, for all v ∈ V ,
and hence do not depend on f(v) and f(u). In other words,
the MPNN constructed is an anonymous MPNN. Without
loss of generality we will assume that anonymous MPNNs
do not use f(v) and f(u) in the messages. If they do then
one can replace them with 0. This way it is easy to see
that classes of MPNNs that use different functions f in
the messages contain the class of anonymous MPNNs. We
denote the class of anonymous MPNNs of the form (2) by
Mσ

GNN for activation function σ.

Another example of an anonymous MPNN originates from
the Weisfeiler-Lehman algorithm described in the prelimi-
naries.

Example 2 (Weisfeiler-Lehman). We recall that WL com-
putes, in round t ≥ 1, for each vertex v ∈ V the label:

`̀̀(t)v := HASH
(
`̀̀(t−1)v , {{`̀̀(t−1)u | u ∈ NG(v)}}

)
.

Let us assume that the set Σ of labels is As for some fixed
s ∈ N+. We cast the WL algorithm as an anonymous
MPNN by using an injection h : As → Q. What follows is
in fact an adaptation of Lemma 5 from Xu et al. (2019) itself
based on Zaheer et al. (2017, Theorem 2). We crucially rely
on the fact that the set A of algebraic numbers is count-
able (see e.g., Theorem 2.2 Jarvis, 2014). As a consequence,
also As is countable.

Let τ : As → N+ be a computable injective function wit-
nessing the countability of As. For instance, since elements
of A are encoded as a polynomial a0 +a1x

1 +a2x
2 + · · ·+

akx
k ∈ Z[x] and a pair n1/d1, n2/d2 of rationals, τ can be

taken to be the composition of the injection α : A → N+,
applied point-wise, and the Cantor tuple function, where

α(a0 + a1x
1 + a2x

2 + · · ·+ akx
k, n1/d1, n2/d2) 7→

p(1, n1)p(2, n2)p(3, d1)p(4, d2)

k∏
i=0

p(i+ 5, ai)

with πi being the i-th prime number in

p(i, z) =

{
πz2i if z ≥ 0

π−z2i+1 if z < 0.

We next define h : As → Q+ as the mapping x 7→ (n +
1)−τ(x). Note that h is injective and h(x) can be seen as
a number whose (n + 1)-ary representation has a single
nonzero digit. We next observe that the multiplicity of every
element in S := {{`̀̀(t−1)u | u ∈ NG(v)}} is bounded by the
number of all vertices n — and this for all t ≥ 1. It follows
that the function φ mapping any such S to

∑
x∈S h(x) is

an injection from As to Q. Therefore, the summands can
be recovered by looking at the (n + 1)-ary representation
of the sum, and thus the inverse of φ is computable on its
image. To conclude, we define the message function

MSG(t)(x,y,−,−) := h(y) ∈ A.

The update function is defined by

UPD(t)(x, y) := HASH(x, φ−1(y)),

where y ∈ A since it corresponds to a sum of messages,
themselves algebraic numbers. As before, we write − in-
stead of 0 to emphasise that the message functions use the
zero function f(v) = 0, for all v ∈ V , and hence do not
depend on f(v) and f(u).

We conclude with an example of a degree-aware MPNN.
We study degree-aware MPNNs in Section 6.
Example 3 (GCNs by Kipf and Welling). We consider the
GCN architecture by Kipf & Welling (2017), which in round
t ≥ 1 computes

L(t) := σ
(

(D + I)−1/2(A + I)(D + I)−1/2L(t−1)W(t)
)
,

where we use the same notation as in Example 1 but now
with a single (learnable) weight matrix W(t) in Ast−1×st .
This means that, in round t, for each vertex v ∈ V it com-
putes the label `̀̀(t)v := σ(a) where

a =

(
1

1 + dv

)
`̀̀(t−1)v W(t)+∑

u∈NG(v)

(
1√

1 + dv

)(
1√

1 + du

)
`̀̀(t−1)u W(t). (3)
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We can regard this architecture again as an MPNN. Indeed,
it suffices to define for each x and y in Ast−1 , each v ∈ V
and u ∈ NG(v), and each t ≥ 1:

MSG(t) (x,y, dv, du) :=
1

dv

(
1

1 + dv

)
xW(t)+(

1√
1 + dv

)(
1√

1 + du

)
yW(t)

UPD(t)(x,y) :=σ(y).

We remark that the initial factor 1/dv in the message func-
tions is introduced for renormalisation purposes. We indeed
observe that the message functions depend only on `̀̀(t−1)v ,
`̀̀(t−1)u , and the degrees dv and du of the vertices v and u,
respectively. We note that the use of algebraic numbers
allows one to consider square roots, needed to view GCNs
as degree-aware MPNNs.

4. Comparing Classes of MPNNs
The distinguishing power of MPNNs relates to their abil-
ity to distinguish vertices based on the labellings that they
compute. We are interested in comparing the distinguishing
power of classes of MPNNs, taking the number of rounds
into account. For a given labelled graph (G,ννν) and MPNN
M , we denote by `̀̀(t)M the vertex labelling computed by M
after t rounds. Formally, `̀̀(t)M depends on the graph (G,ννν)
but we drop this additional dependency from the notation
for readability.

Definition 4. Consider MPNNs M1 and M2 with the same
number of rounds T . Let `̀̀(t)M1

and `̀̀(t)M2
be their labellings on

an input graph (G,ννν) obtained after t rounds of computation
for every 0 ≤ t ≤ T . Then M1 is said to be (G,ννν)-weaker
than M2, denoted by M1 � M2, if M1 cannot distinguish
more vertices thanM2 in every round of computation. More
formally, M1 � M2 if `̀̀(t)M2

v `̀̀(t)M1
for every t ≥ 0. In this

case we also say that M2 is (G,ννν)-stronger than M1. When
(G,ννν) is clear from the context we will write weaker and
stronger for simplicity.

Notice that two MPNNs can compare differently for dif-
ferent graphs. For a comparison that does not depend on
graphs we lift this notion to classesM1 andM2 of MPNNs
(i.e. sets of MPNNs).

Definition 5. Consider two classesM1 andM2 of MPNNs.
Then,M1 is said to be weaker thanM2, denoted byM1 �
M2, if for all M1 ∈M1 and for all labelled graphs (G,ννν)
there exists an M2 ∈ M2 which is (G,ννν)-stronger than
M1.

Note that we use the words stronger and weaker with a non-
strict meaning. In particular if a class is both stronger and
weaker compared to another one we say that they are equally

MWL

MReLU
GNN

Msign
GNN

Manon MWL
�

Thm. 11

�
Thm. 10

⊆
Cor. 9

⊆
Cor. 9

�
Prop. 8

Figure 1. Summary of relationships amongst major anonymous
MPNN classes considered in Section 5.

strong. Formally,M1 andM2 are equally strong, denoted
byM1 ≡M2, ifM1 �M2 andM2 �M1 hold.

We will also need a generalisation of the previous definitions
in which we compare labellings computed by MPNNs at
different rounds. This is formalised as follows.

Definition 6. Consider MPNNsM1 andM2 with T1 and T2
rounds, respectively. Let `̀̀(t)M1

and `̀̀(t)M2
be their labellings on

an input graph (G,ννν) obtained after t rounds of computation.
Let g : N→ N be a monotonic function such that g(T1) =

T2 (thus T1 ≤ T2). We write M1 �g M2, if `̀̀g(t)M2
v `̀̀

(t)
M1

for every 0 ≤ t ≤ T1.

If M1 �g M2 and g(t) = t + 1 then we say that M1 is
weaker than M2 with one step ahead and write M1 �+1

M2; if g(t) = 2t, M1 is weaker than M2 with a factor of 2,
and write M1 �×2 M2. We lift these definitions to classes
of MPNNs, just like in Definition 5.

5. The Power of Anonymous MPNNs
In this section we compare classes of anonymous MPNNs
(aMPNNs for short) in terms of their distinguishing power
using Definition 5. Let (G,ννν) be a labelled graph. We
will consider the following classes of aMPNNs. We denote
by MWL the class of aMPNNs consisting of an aMPNN
MT

WL, for each T ∈ N, originating from the WL algorithm
being ran for T rounds (see Example 2 in Section 3.1).
We write MWL when T is clear from the context. Recall
that the class of anonymous MPNNs is denotedManon and
recall the architecturesMReLU

GNN andMsign
GNN (Example 1 in

Section 3.1).

The following is the main result in this section.

Theorem 7. The classesMWL,MReLU
GNN ,Msign

GNN andManon
are all equally strong.

We prove this theorem in the following subsections by pro-
viding the relationships that are summarised in Figure 1.

5.1. General anonymous MPNNs

We focus on the relation between the WL algorithm and
anonymous MPNNs in general: they are equally strong.
First, note thatMWL is weaker thanManon sinceMWL ⊆
Manon. Second, the fact thatManon is weaker thanMWL
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follows from a technical adaptation of the proofs of Lemma
2 in Xu et al. (2019) and Theorem 5 in Morris et al. (2019).

Proposition 8 (Based on Xu et al. (2019); Morris et al.
(2019)). The classesManon andMWL are equally strong.

We remark that we cannot use the results in Xu et al. (2019)
and Morris et al. (2019) as a black box because the class
Manon is more general than the class considered in those
papers: indeed, we do allow a dependency on label `̀̀(t−1)v in
the message functions whereas Xu et al. (2019) and Morris
et al. (2019) do not. Their MPNNs can, however, also be
cast as aMPNNs.

5.2. Graph neural network-based aMPNNs

In this subsection we study the subclasses of aMPNNs aris-
ing from the graph neural network architectures of Morris
et al. (2019). Let us writeMGNN :=Msign

GNN ∪MReLU
GNN .

We start by stating a direct consequence of Proposition 8. It
follows by recalling thatMGNN is a subclass ofManon.

Corollary 9. The classMGNN is weaker thanManon and
is thus also weaker thanMWL.

More challenging is to show thatMsign
GNN,MReLU

GNN andMWL,
and thus also Manon, are equally strong. The following
results are known.

Theorem 10 (Morris et al., 2019). (i) The classesMsign
GNN

and MWL are equally strong. (ii) The class MReLU
GNN is

weaker thanMWL, andMWL is weaker thanMReLU
GNN , with

a factor of two, i.e.,MWL �×2MReLU
GNN .

The factor of two is due to a simulation of the sign function
by means of a two-fold application of the ReLU function.
We show that this can be avoided.

Theorem 11. The classes MReLU
GNN and MWL are equally

strong.

Proof sketch. We already know thatMReLU
GNN is weaker than

MWL (Theorem 10 and Corollary 9). It remains to show
thatMWL is weaker thanMReLU

GNN . That is, given an aMPNN
and a labelled graph MWL, we need to construct an aMPNN
M in MReLU

GNN such that `̀̀(t)M v `̀̀
(t)
MWL

, for all t ≥ 0. We

observe that since `̀̀(t)MWL
v `̀̀(t)M for any M inMReLU

GNN , this

is equivalent to constructing an M such that `̀̀(t)M ≡ `̀̀
(t)
MWL

.

The aMPNN M inMReLU
GNN that we construct uses message

and update functions of the form:

MSG(t)(x,y,−,−) := yW(t)

UPD(t)(x,y) := ReLU(pxW(t) + y + b(t))

for some value p ∈ A, 0 < p < 1, weight matrix W(t) ∈
Ast−1×st , and bias vector b(t) ∈ Ast .

Note that, in contrast to aMPNNs of the form (2), we
only have one weight matrix per round, instead of two,
at the cost of introducing an extra parameter p ∈ A.
Moreover, the aMPNN constructed in Morris et al. (2019)
uses two distinct weight matrices in A(st−1+s0)×(st+s0)

whereas ours are elements of Ast−1×st and thus of smaller
dimension. Furthermore, we can assume the bias vector b(t)

to be chosen as q1, where q ∈ R is a parameter independent
of the layer, and 1 ∈ R1×st is the all ones row vector of
appropriate dimension.

Remark that the factor two, needed for ReLU in Theorem 10,
has been eliminated. Phrased in linear algebra, we consider
the classMGNN− consisting of aMPNNs of the form

L(t) = σ((A + pI)L(t−1)W(t) − qJ), (4)

and, thus, these suffice to implement the WL algorithm.
Here, J denotes the all ones matrix of appropriate dimension.
We thus have obtained a simple class of aMPNNs,MGNN− ,
which is equally strong asMWL. We will see in the next
section that the parameter p also plays an important role for
degree-aware MPNNs.

6. The Power of Degree-Aware MPNNs
In this section we compare various classes of degree-aware
MPNNs in terms of their distinguishing power. We recall
that degree-aware MPNNs (dMPNNs for short) have mes-
sage functions that depend on the labels and degrees of
vertices. To compare these classes we use Definition 5 and
also Definition 6. In the latter definition we will be inter-
ested in establishing that classes of dMPNNs are weaker or
stronger with 1 step ahead. We will also compare degree-
aware MPNNs with anonymous MPNNs. Recall that by
Theorem 7 all classes of anonymous MPNNs considered in
Section 5 are equivalent for ≡. In particular, they are all
equivalent to the classMWL. Therefore, instead of compar-
ing a classM of dMPNNs with all classes considered in
Section 5 it suffices to compare it withMWL.

Quintessential examples of degree-aware MPNNs are
the popular graph convolutional networks, as introduced
by Kipf & Welling (2017). These are of the form dGNN4

in Table 1, as already described in Example 3 in Section 3.1.
In fact, many commonly used graph neural networks use
degree information. We list a couple of such formalisms,
taken from the literature, in Table 1. It is easily verified that
these can all be cast as dMPNNs along the same lines as
graph convolutional networks.

We consider the following classes of dMPNNs. First, we re-
call thatMdeg is the class of degree-aware MPNNs. Further-
more, for i ∈ {1, 2, . . . , 6}, we defineMdGNNi

as the class
of dMPNNs originating from a GNN of the form dGNNi,
from Table 1, by varying the weight matrices W(t) and,
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dGNN1: σ
(
D−1AL(t−1)W(t)

)
dGNN4: σ

(
(D + I)−1/2(A + I)(D + I)−1/2L(t−1)W(t)

)
dGNN2: σ

(
D−1/2AD−1/2L(t−1)W(t)

)
dGNN5: σ

(
(D−1/2AD−1/2 + I)L(t−1)W(t)

)
dGNN3: σ

(
(D+I)−1(A+I)L(t−1)W(t)

)
dGNN6: σ

(
(rI+(1−r)D)−1/2(A+pI)(rI+(1−r)D)−1/2L(t−1)W(t)

)
Table 1. Various graph neural networks taken from Kipf & Welling (2017); Wu et al. (2019a) and Meltzer et al. (2019), which correspond
to degree-aware MPNNs. We assume the presence of a bias matrix B(t) consisting of copies of the same row b(t).

when applicable, the bias B(t) and parameters p and r. The
following is the main result for this section.

Theorem 12. For the class of degree-aware MPNNs:

1. MWL �Mdeg andMdeg 6� MWL;
2. Mdeg �+1MWL.

For the architectures from Table 1:

3. MdGNNi
6� MWL for i = 2, 4, 5, 6 and MdGNNi

�
MWL for i = 1, 3;

4. MWL 6� MdGNNi
for 1≤i≤5 andMWL �MdGNN6

.

We prove this theorem in the following subsections by pro-
viding the relationships that are summarised in Figure 2.

6.1. General degree-aware MPNNs

We first focus on the relation between the WL algorithm
and dMPNNs in general. More specifically, we start with
the first item in Theorem 12. As part of the proof we
show thatMdGNN4 6� MWL. We can similarly show that
MdGNN2 ,MdGNN5 ,MdGNN6 6� MWL, hereby also settling
the first part of the third item in Theorem 12.

Proposition 13. The classMWL is weaker thanMdeg; but
the classMdeg is not weaker thanMWL.

Proof sketch. Notice thatManon is weaker thanMdeg, sim-
ply because any aMPNN is a dMPNN. The first part of the
claim thus follows from Theorem 7.

For the second part it suffices to provide a dMPNN M and
a labelled graph (G,ννν) such that there is a round t ≥ 0 for
which `̀̀(t)MWL

6v `̀̀(t)M holds.

We construct a dMPNN M fromMdGNN4
. Consider the la-

belled graph (G,ννν) with vertex labelling νννv1 = νννv2 =
(1, 0, 0), νννv3 = νννv6 = (0, 1, 0) and νννv4 = νννv5 =
(0, 0, 1), and edges {v1, v3}, {v2, v3}, {v3, v4}, {v4, v5},
and {v5, v6}. Finally, we define W(1) :=

(
1 0 0
0 1 0
0 0 1

)
. It can

be verified that (`̀̀
(1)
M )v4 6= (`̀̀

(1)
M )v5 . We note, however,

that (`̀̀
(1)
MWL

)v4 = HASH((0, 0, 1), {{(0, 0, 1), (0, 1, 0)}}) =

(`̀̀
(1)
MWL

)v5 . Hence, `̀̀(1)MWL
6v `̀̀(1)M .

We now focus on the second item in Theorem 12.

Proposition 14. It holds thatMdeg �+1MWL.

We will need the following lemma that states that anony-
mous MPNNs can compute the degrees of vertices in the
first round of computation.

Lemma 15. Let (G,ννν) be a labelled graph with ννν : V →
As. There exists an aMPNN Md such that (`̀̀

(1)
Md

)v =

(νννv, dv) ∈ As+1 for every vertex v in V .

The proof of Proposition 14 is an application of the lemma.

Proof sketch. Let (G,ννν) be a labelled graph with ννν :
V → As0 . Take an arbitrary dMPNN M1 such
that for every round t ≥ 1 the message function is
MSG

(t)
M1

(x,y, dv, du) ∈ As′t and UPD
(t)
M1

(x,m) is the up-
date function.

We construct an aMPNN M2 such that `̀̀(t+1)
M2

v `̀̀(t)M1
holds.

We keep as an invariant (I1) stating that for all v if x′ =

(`̀̀
(t)
M1

)v ∈ Ast then x = (x′, dv) = (`̀̀
(t+1)
M2

)v ∈ Ast+1. For

t = 1, we let MSG
(1)
M2

and UPD
(1)
M2

be the functions defined
by Lemma 15. Then, in each round t ≥ 2, M2 extracts
the degrees from the last entries in the labels and simulates
round t of M1. It is readily verified that `̀̀(t+1)

M2
v `̀̀(t)M1

for
every t, and that (I1) holds.

In particular it follows that for the dMPNN M constructed
in the proof of Proposition 13 it holds that `̀̀(2)MWL

v `̀̀(1)M .

6.2. Graph neural network-based dMPNNs

We next consider the relation between the WL algorithm
and dMPNNs that originate from graph neural networks as
those listed in Table 1. More specifically, we consider the
following general graph neural network architecture

L(t) := σ(L(t−1)W
(t)
1 + B(t)

+ diag(g)(A + pI)diag(h)L(t−1)W
(t)
2 ),

(5)

where p ∈ A is parameter satisfying 0 ≤ p ≤ 1, W(t)
1 and

W
(t)
2 are learnable weight matrices in Ast−1×st , B(t) is a

bias matrix consisting of n copies of the same row b(t),
and diag(g) and diag(h) are positive diagonal matrices in
An×n obtained by putting the vectors g and h in An on their
diagonals, respectively. We only consider vectors g and h
which are degree-determined. That is, when dv = dw then
gv = gw and hv = hw for all vertices v and w. Example
vectors that satisfy this are: gv = dv; or gv = c (i.e. the



Comparing GCNs in the Message-Passing Framework

MWL Mdeg

MWL

MWL

MWL

MdGNN1 ,MdGNN3
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Figure 2. Summary of results comparing degree-aware MPNNs in Theorem 12. We note that Proposition 13 shows onlyMdGNN4 6� MWL,
butMdGNN2 ,MdGNN5 ,MdGNN6 6� MWL can be easily inferred from it.

same constant everywhere) for all v. Furthermore, σ is
either the sign or the ReLU function.

All graph neural networks in Table 1 can be seen as spe-
cial cases of (5). Moreover, graph neural networks of the
form (5) can be cast as dMPNNs. The reason that one
obtains dMPNNs is because of the degree-determinacy
assumption. We define the class MdGNN as the class of
dMPNNs with message and update functions of the form:

MSG(t)(x,y, dv, du) := g(dv)h(du)yW
(t)
2

+ 1/dv(xW
(t)
1 + pg(dv)h(dv)xW

(t)
2 ) + b(t)

(6)

UPD(t)(x,m) := σ (m) (7)

for any x,y ∈ Ast−1 , 0 ≤ p ≤ 1, m ∈ Ast W
(t)
1 ∈

Ast−1×st ,W(t)
2 ∈ Ast−1×st , bias vector b(t) ∈ Ast , non-

linear activation function σ, and functions g, h : A → A.
We note that this encoding is just a generalisation of the
encoding of GCNs as dMPNNs.

We know from Proposition 14 that the class MdGNN is
weaker thanMWL, with 1 step ahead. Indeed, it suffices
to note that MdGNN ⊆ Mdeg. In particular, the classes
MdGNN1

–MdGNN6
corresponding to the graph neural net-

work architectures from Table 1 are all weaker thanMWL,
with 1 step ahead. Furthermore, in the proof of Propo-
sition 13 we have shown that the condition that MWL is
1 step ahead is necessary for MdGNN4 , and thus also for
MdGNN. One can provide similar examples for MdGNN2

,
MdGNN5

andMdGNN6
.

In contrast, the two remaining classes, MdGNN1
and

MdGNN3
, are weaker thanMWL (with no step ahead).

Proposition 16. The classes MdGNN1
and MdGNN3

are
weaker thanMWL.

The reason is that dMPNNs in these classes are equivalent to
dMPNNs that only use degree information after neighbour
aggregation, and are thus equivalent to anonymous MPNNs.
To boost the expressive power of aMPNNs, it is therefore
important to use degree information before aggregating.

To conclude, we investigate whether MdGNN and its sub-
classes MdGNN1–MdGNN6 are stronger than MWL. For

MdGNN this follows from Theorem 7, stating in particu-
lar thatMGNN ≡MWL, and from the following remark.

Remark 17. It holds thatMGNN �MdGNN.

Indeed, we observe thatMGNN corresponds to the subclass
ofMdGNN in which the functions g and h are the constant
one function, i.e., g(n) = h(n) = 1 for all n ∈ N+, and
moreover, p = 0. More precisely, for every MPNN M in
MGNN there is an MPNNM ′ inMdGNN such thatM ≡M ′,
from which Remark 17 follows.

So, we know already thatMWL � MdGNN. However, the
aMPNN M inMGNN such that MWL � M holds, as con-
structed for Theorems 10 and 11, does not comply with the
forms of MPNNs corresponding to the graph neural net-
works given in Table 1. We next investigate which classes
MdGNNi

are stronger thatMWL.

We start with some negative results, hereby showing part of
the fourth item in Theorem 12.

Proposition 18. None of the classes MdGNNi
, for i ∈

{1, 2, . . . , 5}, are stronger thanMWL.

The proof consists of a number of counterexamples. In
particular, the classMdGNN4

, corresponding to GCNs (Kipf
& Welling, 2017), is not stronger thanMWL. Indeed, we
can show that there are no W(1),B(1) such that L(1) v
`̀̀
(1)
MWL

for the labelled graph (G2, ννν) with one edge {v1, v2}
and vertex labelling νννv1 = (1, 0) and νννv2 = (0, 1). As
such, “plain vanilla” GCNs fall short in simulating the WL
algorithm. It will follow from our next result that a slight
extension suffices to remedy this shortcoming.

Proposition 19. The classMdGNN6 is stronger thanMWL.

The claim actually holds for any degree-determined g and
h. Our proof closely follows that of Theorem 11. More
specifically, we construct a dMPNN M corresponding to (5)
such that `̀̀(t)M v `̀̀

(t)
MWL

for all t ≥ 0. The crux of the
argument is that one can choose 0 < p < 1 close enough
to 1 so that — loosely speaking — the initial label is not
obliterated.6

6The parameter p serves a similar purpose to the epsilon term
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We already mentioned that the result holds for any degree-
determined g and h. Particularly, the class of dMPNNs
originating from graph neural networks of the form

σ
(

(D + I)−1/2(A + pI)(D + I)−1/2L(t−1)W(t) − qJ
)
,

with p, q ∈ A, 0 ≤ p, q ≤ 1, is stronger thanMWL. The in-
troduction of the parameter p was already suggested in Kipf
& Welling (2017). Proposition 13 shows that it is necessary
to encode the WL algorithm. Our result thus provides a
theoretical justification for including this parameter.

7. Conclusion and Future Work
We investigated the distinguishing power of two classes of
MPNNs, anonymous and degree-aware MPNNs, and shown
that both classes are equivalent to the WL algorithm when
one ignores the number of computation rounds. Taking the
computation rounds into consideration, however, reveals
that degree information may boost the distinguishing power.

Other activation functions. The classMGNN considers
only ReLU and sign as the activation function. For future
work one could consider other nonlinear activation func-
tions, such as softplus or sigmoid. The challenge in extend-
ing the constructions from this paper or those in Morris et al.
(2019) lies in ensuring that after applying the activation
function one gets a non-singular matrix by transforming the
input matrix. For ReLU and sign, we can ensure that an
upper-triangular matrix with non-zero diagonal elements
can be obtained. This requires mapping lower diagonal ele-
ments to 0. For smooth functions softplus or sigmod, 0 is
obtained as a limit value only, which prevents this technique
from working.

Beyond degree-aware MPNNs. There are other mod-
els in the literature that are not captured by our general
degree-aware MPNNs and which are worth exploring in
the MPNN framework. For example, Graph Attention Net-
works (Velickovic et al., 2018) require the message func-
tions to depend on attention weights which likely results
in an increase of expressive power (see also Sato (2020)).
More generally, one can envisage MPNNs in which mes-
sage functions may differ in the parameters that they can
use, resulting in different expressive power.
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