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Abstract There is a long tradition in understanding graphs by investigating their5

adjacency matrices by means of linear algebra. Similarly, logic-based graph query6

languages are commonly used to explore graph properties. In this paper, we bridge7

these two approaches by regarding linear algebra as a graph query language.8

More specifically, we consider J�hG�L:, a matrix query language recently9

introduced, in which some basic linear algebra functionality is supported. We in-10

vestigate the problem of characterising the equivalence of graphs, represented by11

their adjacency matrices, for various fragments of J�hG�L:. That is, we are inter-12

ested in understanding when two graphs cannot be distinguished by posing queries in13

J�hG�L: on their adjacency matrices.14

Surprisingly, a complete picture can be painted of the impact of each of the linear15

algebra operations supported in J�hG�L: on their ability to distinguish graphs.16

Interestingly, these characterisations can often be phrased in terms of spectral and17

combinatorial properties of graphs.18

Furthermore, we also establish links to logical equivalence of graphs. In partic-19

ular, we show that J�hG�L:-equivalence of graphs corresponds to equivalence by20

means of sentences in the three-variable fragment of first-order logic with counting.21

Equivalence with regards to a smaller J�hG�L: fragment is shown to correspond22

to equivalence by means of sentences in the two-variable fragment of this logic.23
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1 Introduction25

Motivated by the importance of linear algebra for machine learning on big data [8,26

9,15,55,63] there is a current interest in languages that combine matrix operations27

with relational query languages in database systems [26,43,49,50,53]. Such hybrid28

languages raise many interesting questions from a database theoretical point of view.29

It seems natural, however, to first consider query languages for matrices alone. These30

are the focus of this paper.31

More precisely, we continue the investigation of the expressive power of the matrix32

query language J�hG�L:, recently introduced by Brĳder et al. [10,11], as an analog33

for matrices of the relational algebra on relations. Intuitively, queries in J�hG�L:34

are built up by composing several linear algebra operations commonly found in linear35

algebra packages. When arbitrary matrices are concerned, it is known that J�hG�L:36

is subsumed by aggregate logic with only three non-numerical variables. This implies,37

among other things, that when evaluated on adjacency matrices of graphs, J�hG�L:38

cannot compute the transitive closure of a graph and neither can it express the four-39

variable query asking if a graph contains a four-clique [10,11].40

In fact, it is implicit in the work by Brĳder et al. that when two graphs G and41

H are indistinguishable by sentences in the three-variable fragment *3 of first-order42

logic with counting, denoted by G"*3 H , then their adjacency matrices cannot be43

distinguished by J�hG�L: expressions that return scalars, henceforth referred to as44

sentences in J�hG�L:. The equivalence with respect to such sentences is denoted45

byG"J�hG�L:H . A natural question is whether the converse implication also holds,46

i.e., doesG"J�hG�L:H also implyG"*3 H? We answer this question affirmatively.47

The underlying proof technique relies on a close connection between *3-equiva-48

lence and the indistinguishability of graphs by the 2-dimensional Weisfeiler-Lehman49

(2qG) algorithm, a result dating back to the seminal paper by Cai, Fürer and Im-50

merman [13,44]. Indeed, as we will see, the linear algebra operators supported in51

J�hG�L: have sufficient power to simulate the 2qG algorithm. Hence, when52

G"J�hG�L:H , then G and H cannot by distinguished by the 2qG algorithm.53

This combinatorial interpretation of J�hG�L:-equivalence immediately pro-54

vides an insight in which graph properties are preserved under J�hG�L:-equivalence55

(see e.g., the work by Fürer [29,30]). For example, when G"J�hG�L:H , then G56

and H must be co-spectral (that is, their adjacency matrices have the same multi-set57

of eigenvalues) and have the same number of s-cycles, for s#6, but not necessarily58

s-cycles for s>7. As observed in the conference version of this paper [31], the case of59

7-cycles easily follows from the connection with J�hG�L:. Indeed, the linear alge-60

bra expressions for counting s-cycles, for s#7, given in Noga et al. [1] are expressible61

in J�hG�L: and hence, 7-cycles are preserved by 2qG-equivalence. This has been62

recently verified using other techniques by Arvind et al. [3]. Although formulas exist63

for counting cycles of length greater than 7 [1], they require counting the number of64

k-cliques, for k$4, which is not possible in J�hG�L:, as observed earlier.65

Apart from the logical and spectral/combinatorial characterisation of J�hG�L:-66

equivalence, we also point out the correspondence between *3-equivalence (and thus67

also 2qG- and J�hG�L:-equivalence) and similarity conditions between adjacency68

matrices. As observed by Dawar et al. [23,24], G"*3 H if and only if there exists69
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a unitary matrix U such that AG !U DU !AH and moreover, U induces an algebraic70

isomorphism between the so-called coherent algebras of AG and AH . Here, AG and71

AH denote the adjacency matrices of G andH , respectively. We recall that a unitary72

matrix U is a complex matrix whose inverse is its complex conjugate tranpose U !.73

Coherent algebras and their isomorphisms are detailed later in the paper.74

All combined, we have a logical, combinatorial and similarity-based character-75

isation of J�hG�L:-equivalence. Surprisingly, similar characterisations hold also76

for fragments of J�hG�L:. We define fragments of J�hG�L: by allowing only77

certain linear algebra operations in our expressions. Such fragments are denoted by78

JG.L/, with L the list of allowed operations. The corresponding notion of equiva-79

lence of graphs G and H will be denoted by G"JG.L/H . That is, G"JG.L/H if80

any sentence in JG.L/ results in the same scalar when evaluated on AG and AH .81

We investigate equivalence for all sensible J�hG�L: fragments. Our results are, as82

follows:83

For starters, we consider the fragment JG. ! ; i`/ that allows for matrix multiplica-84

tion ( ! ) and trace (i`) computation (i.e., taking the sum of the diagonal elements of a85

matrix). Then, G"JG. " ;i`/H if and only if G and H are co-spectral, or equivalently,86

they have the same number of closed walks of any length, orAG !ODO !AH for some87

orthogonal matrix O . We recall that an orthogonal matrix O is a matrix over the real88

numbers such that its inverse coincides with the transpose matrix Oi (Section 5).89

Another small fragment, JG. ! ;!;1/, allows for matrix multiplication, conjugate90

transposition (!) and the use of the vector 1, consisting of all ones. Then,G"JG. " ;!;1/91

H if and only if G and H are co-main (roughly speaking, they are co-spectral only92

for special “main” eigenvalues), or equivalently, they have the same number of (not93

necessarily closed) walks of any length, or AG !QDQ !AH for some doubly quasi-94

stochastic matrix Q. A doubly quasi-stochastic matrix Q is a matrix over the real95

numbers such that every of its columns and rows sums up to one (Section 6).96

When allowing both i` and 1, equivalence of graphs relative to JG. ! ; i`;1/ coin-97

cides, not surprisingly, to the graphs being both co-spectral and co-main, or equiva-98

lently, having the same number of closed and non-closed walks of any length, or such99

thatAG !ODO !AH , for an orthogonal doubly quasi-stochastic matrixO (Section 6).100

More interesting is the fragment JG. ! ;!;1;/B�;/, which also allows for the oper-101

ation /B�;. !/ that turns a vector into a diagonal matrix with that vector on its diagonal.102

For this fragment we can tie equivalence to indistinguishability by the 1-dimensional103

Weisfeiler-Lehman (1qG) algorithm (or colour refinement). This is known to coin-104

cide with the graphs having a common equitable partition, or the existence of a doubly105

stochastic matrix S such that AG !SDS !AH (a.k.a. as a fractional isomorphism), or106

*2-equivalence. Here, *2 denotes the two-variable fragment of first-order logic with107

counting. We recall that a doubly stochastic matrix is a doubly quasi-stochastic matrix108

whose entries are all non-negative (Section 7).109

In the former fragment, replacing the operator /B�;. !/with an operator (ˇv) which110

pointwise multiplies vectors results in the same distinguishing power. By contrast, the111

combination of i` and the ability to pointwise multiply vectors results in a stronger112

notion of equivalence. That is, G"JG. " ;i`;1;ˇv/H if and only if G and H are co-113

spectral and indistinguishable by 1qG. Also in this case, AG !ODO !AH for an114
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orthogonal matrix O that, in addition, needs to preserve equitable partitions. We115

define this preservation condition later in the paper (Section 8).116

For the larger fragment JG. ! ;!; i`;1;/B�;/, no elegant combinatorial character-117

isation is obtained. Nevertheless, for equivalent graphs G and H , AG !ODO !AH118

where O is an orthogonal matrix that can be block-structured according to the equi-119

table partitions. This is a stronger notion than the preservation of equitable partitions.120

Graphs equivalent with respect to this fragment have, for example, the same number121

of spanning trees. This is not necessarily true for all previous fragments (Section 7).122

Finally, as we already mentioned, equivalence relative to J�hG�L: is shown123

to correspond to *3-equivalence and 2qG-equivalence. We additionally refine the124

similarity-based characterisation given by Dawar et al. [23,24] so that it compares125

more easily to the similarity notions obtained for all previous fragments. Furthermore,126

we show that pointwise multiplication of matrices (the Schur-Hadamard product) is127

crucial in this setting (Section 9).128

Each of these fragments can be extended with addition and scalar multiplication at129

no increase in distinguishing power. It is also shown when fragments can be extended130

to accommodate for arbitrary pointwise function applications, on scalars, vectors or131

matrices. We furthermore exhibit example graphs separating all fragments.132

For many of our characterisations we rely on the rich literature on spectral graph133

theory [12,17,18,19,32,39,61,68] and the study on the equivalence by the Weisfeiler-134

Lehman algorithms and fixed-variable fragments of first-order logic with counting [23,135

24,25,35,44,60,65,66,69]. We describe the relevant results in these papers in the136

course of the paper. We also refer to work by Fürer [29,30] for more examples of137

connections to graph invariants and to Dawar et al. [23,24] for connections between138

logic, combinatorial and spectral invariants.139

In some sense, we provide a unifying view of various existing results in the140

literature by grouping them according to the operators supported in J�hG�L:.141

We remark that, recently, another unifying approach has been put forward by Dell142

et al. [25]. In that work, one considers indistinguishability of graphs in terms of143

homomorphism vectors. That is, one defines HOMF .G/ WD.Hom.F;G//F 2F for some144

class F of graphs, where Hom.F;G/ is the number of homomorphisms from F toG.145

Then G and H are indistinguishable for some class F of graphs when HOMF .G/D146

HOMF .H/. When F consists of all cycles, this notion of equivalence corresponds to147

JG. ! ; i`/-equivalence (recall the closed walk characterisation of the latter); when F148

consists of all paths, we have a correspondence with JG. ! ;!;1/-equivalence (recall149

the walk characterisation of the latter); when F consists of trees, G and H are150

equivalent for the 1qG-algorithm and thus also for *2 and JG. ! ;!;1;/B�;/, and151

finally, when F consists of all graphs of tree-width at most 2,G andH are equivalent152

for the 2qG-algorithm and thus also for *3 and J�hG�L:. Our results can thus be153

regarded as a re-interpretation of the results in Dell et al. [25] in terms of J�hG�L:.154

We also remark that *k-equivalence, for k$4, can be characterised in terms of155

solutions to linear problems which resemble similarity-based characterisations [4,36,156

54]. We leave it to future work to identify which additional linear algebra operators157

to include in J�hG�L: such that *k-equivalence can be captured, for k$4.158

Although we made links to logics such as *2 and *3, the connection between159

J�hG�L:, rank logics and fixed-point logics with counting, as studied in the context160
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of the descriptive complexity of linear algebra [21,20,22,34,37,42], is yet to be161

explored. Similarly for connections to logic-based graph query languages [2,6].162

2 Background163

We denote the set of real numbers by R and the set of complex numbers by . The set of164

m%n-matrices over the real (resp., complex) numbers is denoted by Rm#n (resp., m#n).165

Vectors are elements of Rm#1 (or m#1). The entries of an m%n-matrix A are denoted166

by Aij , for iD1; : : : ;m and j D1; : : : ;n. The entries of a vector v are denoted by vi ,167

for iD1; : : : ;m. We often identify R1#1 with R, and 1#1 with . The following classes168

of matrices are of interest in this paper: square matrices (elements in Rn#n or n#n),169

symmetric matrices (such that Aij DAj i for all i and j ), doubly stochastic matrices170

(Aij 2R, Aij $0, Pn
j D1Aij D1 and

Pm
iD1Aij D1 for all i and j ), doubly quasi-171

stochastic matrices (Aij 2R,
Pn

j D1Aij D1 and
Pm

iD1Aij D1 for all i and j ), and172

orthogonal matrices (O 2Rn#n, Oi !ODI DO !Oi, where Oi denotes the transpose173

of O obtained by switching rows and columns, ! denotes matrix multiplication, and174

I is the identity matrix in Rn#n).175

We only need a couple of notions of linear algebra. We refer to the textbook by176

Axler [5] for more background. An eigenvalue of a matrixA is a scalar ! in for which177

there is a non-zero vector v satisfyingA !vD!v. Such a vector is called an eigenvector178

of A for eigenvalue !. The eigenspace of an eigenvalue is the vector space obtained179

as the span of a maximal set of linear independent eigenvectors for this eigenvalue.180

Here, the span of a set of vectors just refers to the set of all linear combinations of181

vectors in that set. A set of vectors is linear independent if no vector in that set can182

be written as a linear combination of other vectors. The dimension of an eigenspace183

is the minimal number of eigenvectors that span the eigenspace.184

We will only consider undirected graphs without self-loops. Let GD.V;E/ be185

such a graph with vertices V Df1; : : : ;ng and unordered edges E&ffi;j g j i;j 2V g.186

The order of G is simply the number of vertices. Then, the adjacency matrix of a187

graph G of order n, denoted by AG , is an n%n-matrix whose entries .AG/ij are set to188

1 if and only if fi;j g2E, all other entries are set to 0. The matrix AG is a symmetric189

real matrix with zeroes on its diagonal. The spectrum of an undirected graph can be190

represented as bT2+.G/D
!
!1 !2 ! ! ! !p

m1 m2 ! ! ! mp

"
, where !1<!2< ! ! !<!p are the distinct191

real eigenvalues of the adjacency matrix AG of G, and where m1;m2; : : : ;mp denote192

the dimensions of the corresponding eigenspaces. Two graphs are said to be co-spectral193

if they have the same spectrum. We introduce other relevant notions throughout the194

paper. Recall that a walk of length k in a graphGD.V;E/ is a sequence .v0;v1; : : : ;vk/195

of vertices of G such that consecutive vertices are adjacent in G, i.e., .vi$1;vi /2E196

for all iD1; : : : ;k. Furthermore, a closed walk is a walk that starts in and ends at the197

same vertex. Closed walks of length 0 correspond, as usual, to vertices in G.198
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3 Matrix query languages199

As described in Brĳder et al. [10], matrix query languages can be formalised as200

compositions of linear algebra operations. Intuitively, a linear algebra operation takes201

a number of matrices as input and returns another matrix. Examples of operations are202

matrix multiplication, conjugate transposition, computing the trace, just to name a few.203

By closing such operations under composition “matrix query languages” are formed.204

More specifically, for linear algebra operations QT1; : : : ;QTk the corresponding matrix205

query language is denoted by JG.QT1; : : : ;QTk/ and consists of expressions formed206

by the following grammar:207

e WDX jQT1

#
e1; : : : ; ep1

$
j ! ! ! jQTk

#
e1; : : : ; epk

$
;

where X denotes a matrix variable which serves to indicate the input to expressions208

and pi denotes the number of inputs required by operation QTi . We focus on the case209

when only a single matrix variable X is present. The treatment of multiple variables210

is left for future work.211

The semantics of an expression e.X/ in JG.QT1; : : : ;QTk/ is defined inductively,216

relative to an assignment " of X to a matrix ".X/2m#n, for some dimensions m217

and n. We denote by e
#
".X/

$
the result of evaluating e.X/ on ".X/. As expected,218

we define QTi .e1.X/; : : : ; epi
.X//.".X// WDQTi

#
e1.".X//; : : : ; epi

.".X//
$

for linear219

algebra operation QTi . In Table 3.1 we list the operations constituting the basic matrix220

query language J�hG�L:, introduced in Brĳder et al. [10]. In the table we also show221

their semantics. We note that restrictions on the dimensions are in place to ensure that222

operations are well-defined. Using a simple type system one can formalise a notion of223

well-formed expressions which guarantees that the semantics of such expressions is224

well-defined. We refer to Brĳder et al. [10] for details. We only consider well-formed225

expressions from here on.226

Remark 3.1 The list of operations in Table 3.1 differs slightly from the list presented227

in Brĳder et al. [10]: We explicitly mention scalar multiplication (%), addition (C),228

and the trace operation (i`), all of which can be expressed in J�hG�L:. Hence,229

J�hG�L: and JG. ! ;!; i`;1;/B�;;C;%;�TTHvŒf #;f 2$/ are equivalent.230

4 Expressive power of matrix query languages231

As mentioned in the introduction, we are interested in the expressive power of232

matrix query languages. In analogy with indistinguishability notions used in logic, we233

consider sentences in our matrix query languages. We define an expression e.X/ in234

JG.QT1; : : : ;QTk/ to be a sentence if e.".X// returns a 1%1-matrix (i.e., a scalar) for235

any assignment " of the matrix variable X in e.X/. We note that the type system of236

J�hG�L: allows to easily check whether an expression in JG.L/ is a sentence (see237

Brĳder et al. [10] for more details). Having defined sentences, a notion of equivalence238

naturally follows.239

Definition 4.1 Two matrices A and B in m#n are said to be JG.QTR; : : : ;QTF/-240

equivalent, denoted byA"JG.QTR;:::;QTF/B , if and only if e.A/De.B/ for all sentences241

e.X/ in JG.QTR; : : : ;QTF/.242
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conjugate transposition (QT.e/De!)
e.!.X//DA2m"n e.!.X//! DA! 2n"m .A!/ij DA!

ji

one-vector (QT.e/D1.e/)
e.!.X//DA2m"n 1.e.!.X//D12m"1 1i D1

diagonalization of a vector (QT.e/D/B�;.e/)

e.!.X//DA2m"1 /B�;.e.!.X//D/B�;.A/2m"m /B�;.A/ii DAi ,
/B�;.A/ij D0, i ¤j

matrix multiplication (QT.e1;e2/De1 "e2)
e1.!.X//DA2m"n

e1.!.X// "e2.!.X//DC 2m"o Cij DPn
kD1 Aik #Bkj

e2.!.X//DB 2m"o

matrix addition (QT.e1;e2/De1 Ce2)
ei .!.X//DA.i/ 2m"n e1.!/.X/Ce2.!.X//DB 2m"n Bij DA.1/

ij CA.2/
ij

scalar multiplication (QT.e/Dc#e, c 2)
e.!.X//DA2m"n c#e.!.X//DB 2m"n Bij Dc#Aij

trace (QT.e/Di`.e/)
e.!.X//DA2m"m i`.e.!.X//Dc 2 c DPm

iD1 Aii

pointwise function application (QT.e1; : : : ;ep/D�TTHvŒf ".e1; : : : ;ep/), f Wp!2#

ei .!.X//DA.i/ 2m"n �TTHvŒf "
#
e1.!.X//; : : : ;ep.!.X//

$DB 2m"n Bij Df .A.1/
ij ; : : : ;A.p/

ij /

212

Table 3.1 Linear algebra operations (supported in J�hG�L: [10]) and their semantics. In the first
operation, ! denotes complex conjugation. In the last operation, #DS

k>0 #k , where #k consists of
functions f Wk!.

213

214

215

In other words, equivalent matrices cannot be distinguished by sentences in the matrix243

query language under consideration. One could imagine defining equivalence with244

regards to arbitrary expressions, i.e., expressions in J�hG�L: that are not neces-245

sarily sentences. Such a notion would be too strong, however. Indeed, requiring that246

e.A/De.B/ for arbitrary expressions e.X/ would imply that ADB (just consider247

e.X/ WDX/) and then the story ends.248

We aim to characterise equivalence of matrices for various matrix query lan-249

guages. We will, however, not treat this problem in full generality and instead only250

consider equivalence of adjacency matrices of undirected graphs. We leave the gen-251

eralisation to directed graphs and to arbitrary matrices for future work. Definition 4.1,252

when applied to adjacency matrices naturally result in the following notion of equiv-253

alence of graphs.254

Definition 4.2 Two graphsG andH of the same order are said to be JG.QTR; : : : ;QTF/-255

equivalent, denoted byG"JG.QTR;:::;QTF/H , if and only if their adjacency matrices are256

JG.QTR; : : : ;QTF/-equivalent.257

In the following sections we consider equivalence of graphs for various fragments,258

starting from simple fragments only supporting a couple of linear algebra operations,259

up to the full J�hG�L: matrix query language.260

5 Expressive power of the matrix query language JG. ! ;i`/261

The smallest fragment, in terms of the number of supported operations, that we con-262

sider is JG. ! ; i`/, i.e., the matrix query language in which only matrix multiplication263

and the trace operation are supported. This is a very restrictive fragment since the264
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only sentences that one can formulate are of the form (i) O+r�HFk.X/ WD i`.Xk/,265

where Xk stands for the kth power of X , i.e., X multiplied k times with itself, and266

(ii) products of such sentences. We note that, when evaluated on an adjacency ma-267

trix AG , O+r�HFk.AG/ is equal to the number of closed walks of length k in G.268

Indeed, an entry .Ak
G/v;w of the kth power Ak

G of adjacency matrix AG can be easily269

seen to correspond to the number of walks from v to w of length k in G. Hence,270

O+r�HFk.AG/D i`.Ak
G/D

P
v2V .A

k
G/vv indeed corresponds to the number of closed271

walks of length k in G.272

The following (folklore) characterisations are known to hold.273

Proposition 5.1 Let G and H be two graphs of the same order. The following state-274

ments are equivalent:275

(1) G and H have the same number of closed walks of length k, for all k$0;276

(2) i`.Ak
G/D i`.Ak

H / for all k$0;277

(3) G and H are co-spectral; and278

(4) there exists an orthogonal matrix O such that AG !ODO !AH .279

Proof For a proof of the equivalences (1) , (2) , (3) we refer to Proposition 1280

in [23] (although these equivalences appeared in the literature many times before).281

The equivalence (3) , (4) is also known (see e.g., Theorem 9-12 in [59]). ut282

Example 5.1 The graphs G1 ( ) and H1 ( ) are the smallest pair (in terms of283

number of vertices) of non-isomorphic co-spectral graphs of the same order (see e.g.,284

Figure 6.2 in [16]). From the previous proposition we then know thatG1 andH1 have285

the same number of closed walks of any length. We note that the isolated vertex inG1286

ensures that G1 andH1 have the same number of vertices (and thus the same number287

of closed walks of length 0). ut288

As expected, sentences in JG. ! ; i`/ can only extract information from adjacency289

matrices related to the number of closed walks in graphs. More precisely, we can add290

to Proposition 5.1 a fifth equivalent condition based on JG. ! ; i`/-equivalence:291

Proposition 5.2 For two graphs G and H of the same order, G"JG. " ;i`/H if and292

only if G and H have the same number of closed walks of any length.293

Proof By definition, if G"JG. " ;i`/H , then e.AG/De.AH / for any sentence e.X/294

in JG. ! ; i`/. This holds in particular for the sentences O+r�HFk.X/ WD i`.Xk/ in295

JG. ! ; i`/, for k$1. Hence, G and H have indeed the same number of closed walks296

of length k, for k$1. Furthermore, since G and H are of the same order and297

A0
G DA0

H DI (by convention), G and H have also the same number of closed walks298

of length 0.299

For the converse, ifG andH have the same number of closed walks of any length,300

then the previous proposition tells that AG !ODO !AH for some orthogonal matrix301

O . We next claim that when AG !ODO !AH holds for some orthogonal matrix O ,302

then e.AG/De.AH / for any sentence e.X/ in JG. ! ; i`/. In fact, this claim will follow303

from the more general Lemmas 5.1 and 5.2 below. We separate these Lemmas from304

the current proof since we also need them later in the paper. ut305
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We thus see that yet another interpretation of G"JG. " ;i`/H can be given in terms of306

the homomorphism vectors mentioned in the Introduction. That is, G"JG. " ;i`/H if307

and only if HOMF .G/DHOMF .H/ where F is the set of all cycles [25].308

As mentioned in the proof of Proposition 5.2, we still need to show that ifAG !OD309

O !AH holds for some orthogonal matrix O , then e.AG/De.AH / for any sentence310

e.X/ in JG. ! ; i`/. In more generality, we refer to the existence of a (not necessarily311

orthogonal) matrix T such that AG !T DT !AH holds, by saying that AG and AH312

are T -similar. We also need the notion of T -similarity for vectors and scalars, as is313

defined next.314

Definition 5.1 Let T be a matrix in n#n. Two matrices A and B in n#n are called315

T -similar if A !T DT !B . Two vectors A and B in n#1 are T -similar if ADT !B .316

Similarly, two vectors A and B in 1#n are T -similar if A !T DB . Finally, if A and B317

are scalars in , then A and B are T -similar if ADB (i.e., T -similarity of scalars is318

simply equality).319

In JG. ! ; i`/ we allow matrix multiplication and the trace operation. We first show320

that T -similarity is preserved by matrix multiplication for any matrix T .321

Lemma 5.1 Let AG and AH be two adjacency matrices of the same dimensions. Let322

e1.X/ and e2.X/ be two expressions in JG.L/ for anyL. If ei .AG/ and ei .AH / are T -323

similar, for iD1;2, for an arbitrary matrix T , then e1.AG/ !e2.AG/ is also T -similar324

to e1.AH / !e2.AH / (provided, of course, that the multiplication is well-defined).325

Proof The proof consists of a simple case analysis depending on the dimensions of326

e1.AG/ and e2.AG/ (or equivalently, the dimensions of e1.AH / and e2.AH /) and by327

using the definition of T -similarity. We refer for the proof to the appendix. ut328

When considering the trace operation, we observe that T -similarity is preserved329

by the trace operation for any invertible matrix T .330

Lemma 5.2 Let AG and AH be two adjacency matrices of the same dimensions. Let331

e1.X/ be an expression in JG.L/ for any L. If e1.AG/ and e1.AH / are T -similar for332

an invertible matrix T , then i`.e1.AG// and i`.e1.AH // are also T -similar.333

Proof Let e.X/ WD i`.e1.X//. By assumption, e1.AG/ !T DT !e1.AH / for an invert-334

ible matrix T in case that e1.AG/ is an n%n-matrix, and e1.AG/De1.AH / in case335

that e1.AG/ is a sentence. In the latter case, clearly also e.AG/D i`.e1.AG//D336

i`.e1.AH //De.AH /. In the former case, we use the property that i`.T $1 !A !T /D337

i`.A/ for any matrix A and invertible matrix T (see e.g., Chapter 10 in [5] for a proof338

of this property). Hence, we have that e.AG/D i`.e1.AG//D i`.T $1 !e1.AG/ !T /D339

i`.T $1 !T !e1.AH //D i`.I !e1.AH //D i`.e1.AH //De.AH / holds, as desired. ut340

We remark that Lemmas 5.1 and 5.2 hold for any fragment JG.L/.341

The claim at the end of the proof of Proposition 5.2, i.e., O-similarity of AG and342

AH indeed implies that e.AG/De.AH / for any sentence e.X/2JG. ! ; i`/, now easily343

follows by induction on the structure of expressions, Indeed, since orthogonal matrices344

are invertible, Lemmas 5.1 and 5.2 imply that when e1.AG/ and e1.AH /, and e2.AG/345

and e2.AH / areO-similar for an orthogonal matrixO , then also e1.AG/ !e2.AG/ and346
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e1.AH / !e2.AH / are O-similar, and i`.e1.AG// and i`.e1.AH // are O-similar (i.e.,347

equal). Hence, when AG and AH are O-similar, e.AG/ and e.AH / are O-similar for348

any sentence e.X/2JG. ! ; i`/. That is, e.AG/De.AH / for any sentence in JG. ! ; i`/.349

5.1 Adding operations to JG. ! ; i`/ without increasing its distinguishing power350

We conclude this section by investigating how much more JG. ! ; i`/ can be extended351

whilst preserving the characterisation given in Proposition 5.2. Some more general352

observations will be made in this context, which will be used for other fragments later353

in the paper as well.354

First, we consider the extension with scalar multiplication (%) and addition (C).355

Lemma 5.3 Let JG.L/ be any matrix query language fragment. Let e1.X/ and e2.X/356

be two expressions in JG.L/ and consider two graphs G and H of the same order.357

Then, if e1.AG/ and e1.AH /, and e2.AG/ and e2.AH / are T -similar for some matrix358

T , then also e1.AG/Ce2.AG/ and e1.AH /Ce2.AH / are T -similar, and a%e1.AG/359

and a%e1.AH / are T -similar for any scalar a2C .360

Proof This is an immediate consequence of the definition of T -similarity and that361

matrix multiplication is a bilinear operation, i.e., .a%ACb%B/ !.c%CCd%D/D362

.a%c/%.A !C/C.a%d/%.A !D/C.b%c/%.B !C/C.b%d/%.B !D/, for scalars a,363

b, c, d 2 and matrices or vectors A;B;C and D. ut364

We next consider complex conjugate transposition (!).365

Lemma 5.4 Let JG.L/ be any matrix query language fragment. Let e.X/ be an366

expression in JG.L/ and consider two graphs G and H of the same order. Then, if367

e.AG/ and e.AH / are T -similar, and e.AH / and e.AG/ are T !-similar for some ma-368

trix T , then also .e.AG//
! and .e.AH //

! are T -similar, and .e.AH //
! and .e.AG//

!
369

are T !-similar.370

Proof We distinguish between a number of cases, depending on the dimensions of371

e.AG/ (and hence also of e.AH /). Suppose that e.AG/ returns an n%n-matrix. Then,372

by assumption e.AG/ !T DT !e.AH / and e.AH / !T ! DT ! !e.AG/. It then follows,373

using that the operation ! is an involution (.A!/! DA) and .A !B/! DB! !A!, that374

.e.AG//
! !T D.T ! !e.AG//

! D.e.AH / !T !/! DT !.e.AH //
!;375

and similarly,376

.e.AH //
! !T ! D.T !e.AH //

! D.e.AG/ !T /! DT ! !.e.AG//
!:377

Furthermore, when e.AG/ is an n%1-vector, we have by assumption that e.AG/D378

T !e.AH / and e.AH /DT ! !e.AG/. Hence, .e.AG//
! !T D.T !!e.AG//

! D.e.AH //
!

379

and .e.AH //
! !T ! D.T !e.AH //

! D.e.AG//
!. Similarly, when e.AG/ is a 1%n-vector,380

one can verify that ..e.AG//
! DT !.e.AH //

! and .e.AH //
! DT ! !.e.AG//

!. Finally,381

if e.AG/ is a sentence then clearly .e.AG//
! D.e.AH //

!. ut382

We next consider pointwise function applications. Later in the paper we show that383

pointwise function applications on vectors or matrices do add expressive power. By384
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contrast, when such function applications are only allowed on scalars they do not add385

any expressive power. More precisely, let f Wk! be a function in $. We denote by386

�TTHvbŒf #.e1; : : : ; ek/ the application of f on e1.X/; : : : ; ek.X/ when each ei .X/ is a387

sentence.388

Lemma 5.5 Let JG.L/ be any matrix query language fragment. Consider two graphs389

G and H of the same order and sentences e1.X/;e2.X/; : : : ; ek.X/ in JG.L/. Let390

f Wk! be a function in $. Suppose that for each iD1; : : : ;k, ei .AG/Dei .AH / (i.e.,391

they are T -similar for any matrix T ). Then also �TTHvbŒf #.e1.AG/; : : : ; ek.AG//D392

�TTHvbŒf #.e1.AH /; : : : ; ek.AH // (i.e., they are T -similar as well).393

Proof This is straightforward since the result of a function f Wk! is fully determined394

by its input values. ut395

Given these lemmas, we can infer that the characterisation given in Proposition 5.2396

remains to hold for JG. ! ; i`;C;%;!;�TTHvbŒf #;f 2$/-equivalence.397

Corollary 5.1 For two graphs G andH of the same order, G"JG. " ;i`/H if and only398

if G"JG. " ;i`;C;#;!;�TTHvbŒf ";f 2#/H . ut399

Proof We only need to show thatG"JG. " ;i`/H impliesG"JG. " ;i`;C;#;!;�TTHvbŒf ";f 2#/400

H . By Proposition 5.2, there exists an orthogonal matrix O such that AG !OD401

O !AH . Furthermore, we have that O! !AG D.AG !O/! D.O !AH /
! DAH !O! since402

AG andAH are symmetric real matrices. Hence,AH andAG areO!-similar. We also,403

importantly, observe thatO! is an orthogonal matrix as well. Lemmas 5.1 and 5.2 then404

imply that e.AG/ and e.AH / are O-similar, and e.AH / and e.AG/ are O!-similar405

for any expression e.X/ in JG. ! ; i`/. Furthermore, Lemmas 5.3, 5.4 and 5.5 imply406

that addition, scalar multiplication, complex conjugate transposition and pointwise407

function applications on scalars preserve O and O!-similarity. This in turn implies408

that e.AG/De.AH / for any sentence e.X/2JG. ! ; i`;C;%;!;�TTHvbŒf #;f 2$/. ut409

As a consequence, the graphs G1 ( ) and H1 ( ) from Example 5.1 cannot be410

distinguished by sentences in JG. ! ; i`;C;%;!;�TTHvbŒf #;f 2$/. As we will see411

later, including any other operation from Table 3.1, such as 1. !/, /B�;. !/ or pointwise412

function applications on vectors or matrices, allows us to distinguish G1 and H1.413

6 The impact of the 1. !/ operation414

The 1. !/ operation, which returns the all-ones vector 11, allows to extract other415

information from graphs than just the number of closed walks. Indeed, consider the416

sentences417

Or�HFk.X/ WD.1.X//! !Xk !1.X/ and Or�HF0
k.X/ WD i`.Xk !1.X//;418

in JG. ! ;!;1/ and JG. ! ; i`;1/, respectively. When applied on adjacency matrix AG419

of a graph G, Or�HFk.AG/ (and also Or�HF0
k.AG/) returns the number of (not420

1 We use 1 to denote the all-ones vector (of appropriate dimension) and use 1. "/ (with brackets) for the
corresponding one-vector operation.
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necessarily closed) walks in G of length k. In relation to the previous section, co-421

spectral graphs have the same number of closed walks of any length, yet do not422

necessarily have the same number of walks of any length. Similarly, graphs with the423

same number of walks of any length are not necessarily co-spectral.424

Example 6.1 It can be verified that the co-spectral graphs G1 ( ) and H1 ( ) of425

Example 5.1 have 16 versus 20 walks of length 2, respectively. As a consequence,426

JG. ! ;!;1/ and JG. ! ; i`;1/ can distinguish G1 from H1 by means of the sentences427

Or�HF2.X/ and Or�HF0
2.X/, respectively. By contrast, the graphs G2 ( ) and428

H2 ( ) are not co-spectral, yet have the same number of walks of any length.429

It is easy to see that G2 and H2 are not co-spectral (apart from verifying that their430

spectra are different): H2 has 12 closed walks of length 3 (because of the triangles),431

whereas G2 has no closed walks of length 3. As a consequence, JG. ! ; i`/ (and thus432

also JG. ! ; i`;1/) can distinguish G2 and H2. We argue below that G2 and H2 have433

the same number of walks of any length and show that JG. ! ;!;1/ cannot distinguish434

G2 and H2. ut435

The previous example illustrates the key difference between JG. ! ;!;1/ and JG. ! ; i`;1/.436

The former can only detect differences in the number of walks of certain lengths, the437

latter can detect differences in both the number of walks and closed walks of certain438

lengths.439

Graphs sharing the same number of walks of any length have been investigated440

before in spectral graph theory [17,18,39,61]. To state a spectral characterisation, the441

so-called main spectrum of a graph needs to be considered. The main spectrum of a442

graph is the set of eigenvalues whose eigenspace is not orthogonal to the 1 vector. More443

formally, consider an eigenvalue ! and its corresponding eigenspace, represented by444

a matrix V whose columns are eigenvectors of ! that span the eigenspace of !. Then,445

the main angle ˇ$ of !’s eigenspace is 1p
n
kV i !1k2, where k !k2 is the Euclidean446

norm. The main eigenvalues are now simply those eigenvalues with a non-zero main447

angle. Furthermore, two graphs are said to be co-main if they have the same set448

of main eigenvalues and corresponding main angles. Intuitively, the importance of449

the orthogonal projection on 1 stems from the observation that Or�HFk.AG/ can be450

expressed as
P

i !
k
i ˇ

2
$i

where the !i ’s are the distinct eigenvalues ofAG . Clearly, only451

those eigenvalues !i for which ˇ$i
is non-zero matter when computing Or�HFk.AG/.452

This results in the following characterisation.453

Proposition 6.1 (Theorem 1.3.5 in Cvetković et al. [19]) Two graphs G and H of454

the same order are co-main if and only if they have the same number of walks of455

length k, for every k$0. ut456

Furthermore, the following proposition follows implicitly from the proof of The-457

orem 3 in van Dam et al. [68]. This proposition is also explicitly proved more recently458

in Theorem 1.2 in Dell et al. [25] in the context of distinguishing graphs by means of459

homomorphism vectors HOMF .G/ and HOMF .H/ where F consists of all paths.460

Proposition 6.2 Two graphs G and H of the same order have the same number of461

walks of length k, for every k$0, if and only if there is a doubly quasi-stochastic462

matrix Q such that AG !QDQ !AH . ut463
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Example 6.2 (Continuation of Example 6.1) Consider the subgraph G3 ( ) of G2464

and the subgraph H3 ( ) of H2. It is readily verified that there exists a doubly465

quasi-stochastic matrix Q such that AG3
!QDQ !AH3

. Indeed, AG3
!Q is equal to466

2

6666664

0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

3

7777775
!

2

6666664

0 0 1
2
0 0 1

2

0 0 0 1
2

1
2
0

1
2
0 0 0 1

2
0

0 1
2
0 0 0 1

2

0 1
2

1
2
0 0 0

1
2
0 0 1

2
0 0

3

7777775
D

2

6666664

0 0 1
2
0 0 1

2

0 0 0 1
2

1
2
0

1
2
0 0 0 1

2
0

0 1
2
0 0 0 1

2

0 1
2

1
2
0 0 0

1
2
0 0 1

2
0 0

3

7777775
!

2

6666664

0 0 1 0 0 1
0 0 0 1 1 0
1 0 0 0 1 0
0 1 0 0 0 1
0 1 1 0 0 0
1 0 0 1 0 0

3

7777775
;467

which is equal toQ !AH3
. Hence by Proposition 6.2,G3 andH3 have the same number468

of walks on any length. ut469

Just as for the fragment JG. ! ; i`/ (Proposition 5.2), it turns out that sentences470

in JG. ! ;!;1/ can only extract information from adjacency matrices related to the471

number of walks in graphs. More precisely,472

Proposition 6.3 LetG andH be two graphs of the same order. Then,G"JG. " ;!;1/H473

if and only if G and H have the same number of walks of any length.474

Proof It is straightforward to show that G"JG. " ;!;1/H implies that G and H must475

have the same number of walks of any length. This follows from the same argument476

as given in the proof of Proposition 5.2. For the converse, we use the characterisation477

given in Proposition 6.2. That is, if G and H have the same number of walks of any478

length, then there exists a doubly quasi-stochastic matrixQ such thatAG !QDQ !AH .479

In other words, AG and AH are Q-similar. We then show that when AG and AH480

are Q-similar, for a doubly quasi-stochastic matrix Q, then e.AG/De.AH / for all481

sentences e.X/ in JG. ! ;!;1/. We here rely on a more general result (Lemma 6.1482

below), which states that T -similarity is preserved by the operation 1. !/ provided483

that T is a quasi-stochastic matrix T , i.e., T !1D1. We again separate this Lemma484

from the current proof because we need it also later in the paper. This suffices485

to conclude that expressions in JG. ! ;!;1/ preserve Q-similarity. Indeed, to deal486

with complex conjugate transposition, we note that AG !QDQ !AH implies that487

AH !Q! D.Q !AH /
! D.AG !Q/! DQ! !AG since AG and AH are symmetric real488

matrices. Furthermore, since Q is a real matrix and quasi doubly-stochastic, also489

Q! !1D1 holds. That is, Q! is a (doubly) quasi-stochastic matrix as well. Hence,490

Lemmas 5.1 and 6.1 imply that Q-similarity and Q!-similarity are preserved by491

matrix multiplication and the one-vector operation. Combined with Lemma 5.4, we492

may indeed conclude thatQ-similarity andQ!-similarity is also preserved by complex493

conjugate transposition. Hence, by induction on the structure of expressions, e.AG/D494

e.AH / for any sentence e.X/2JG. ! ;!;1/. ut495

We now show that T -similarity is preserved under the one-vector operation for496

any quasi-stochastic matrix T . In fact, since the result of 1. !/ is only dependent on497

the dimensions of the input, we have do not even need the T -similarity assumption498

on the inputs.499
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Lemma 6.1 Let AG and AH be two adjacency matrices of the same dimensions. Let500

e1.X/ be an expression in JG.L/ for any L. Then, 1.e1.AG// and 1.e1.AH // are501

T -similar for any quasi-stochastic matrix T .502

Proof The proof is straightforward. Let e.X/ WD1.e1.X//. We distinguish between503

the following cases, depending on the dimensions of e1.AG/. If e1.AG/ is an n%n-504

matrix or n%1-vector, then e.AG/De.AH /D1 and e.AG/D1DT !1DT !e.AH /.505

Furthermore, if e1.AG/ is a 1%n-vector or sentence, then e.AG/De.AH /D Œ1# and506

thus these agree and are T -similar. ut507

We next turn our attention to JG. ! ; i`;1/. We know from Propositions 5.1 and 5.2508

that G"JG. " ;i`;1/H implies that G and H are co-spectral. Combined with Propo-509

sition 6.1 and the fact that the sentence Or�HF0
k.X/ counts the number of walks of510

length k, we have that G"JG. " ;i`;1/H implies that G and H are co-spectral and511

co-main. The following is known about such graphs.512

Proposition 6.4 (Corollary to Theorem 2 in Johnson and Newman [46]) Two co-513

spectral graphs G and H of the same order are co-main if and only if there exists an514

orthogonal matrix O such that AG !ODO !AH and O !1D1. ut515

In other words, G"JG. " ;i`;1/H implies the existence of an orthogonal matrix O516

such thatO !1D1 (i.e.,O is also quasi-stochastic) and AG !ODO !AH . We can now517

use Lemmas 5.1, 5.2 and 6.1 to show the converse. Indeed, these lemmas combined518

tell us that AG !ODO !AH implies that e.AG/De.AH / for any sentence e.X/ in519

JG. ! ; i`;1/. As a consequence:520

Proposition 6.5 For two graphs G and H of the same order, G"JG. " ;i`;1/H if and521

only ifG andH have the same number of closed walks and the same number of walks522

of any length if and only if AG !ODO !AH for an orthogonal matrix O such that523

O !1D1. ut524

We can also phrase JG. ! ; i`;1/-equivalence in terms of homomorphism vectors. That525

is, G"JG. " ;i`;1/H if and only if HOMF .G/DHOMF .H/, where F now consists of526

all cycles and paths. This complements the results in Dell et al. [25].527

As a note aside, an alternative characterisation to Proposition 6.4 (Theorem 3 in528

van Dam et al. [68]) is thatG andH are co-spectral and co-main if and only if bothG529

andH and their complement graphs NG and NH are co-spectral. Here, the complement530

graph NG of G is the graph with adjacency matrix given by J'AG 'I , where J is the531

all-ones matrix, and similarly for NH .532

Example 6.3 (Continuation of Example 6.1) Consider the subgraph G4 ( ) of G2533

and the subgraphH4 ( ) ofH2. These are known to be the smallest non-isomorphic534

co-spectral graphs with co-spectral complements (see e.g., Figure 4 in [38]). From the535

previous remark it then follows thatG4 andH4 have the same number of (closed) walks536

of any length. These graphs are thus indistinguishable by sentences in JG. ! ;!;1/ and537

JG. ! ; i`;1/. Combined with our earlier observation in Example 6.2 that also G3538

and H3 have the same number of walks, we may conclude that the disjoint unions539

G2 DG3[G4 ( ) andH2 DH3[H4 ( ) have the same number of walks of540

any length, as anticipated in Example 6.1. ut541
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We remark that as a consequence of Propositions 6.3 and 6.5, G"JG. " ;i`;1/H542

implies that G"JG. " ;!;1/H . We already mentioned in Example 6.1 that the graphs543

G2 ( ) and H2 ( ) show that the converse does not hold.544

We conclude again by observing that addition, scalar multiplication and point-545

wise function application on scalars can be added to JG. ! ;! ;1/ and JG. ! ; i`;1/ at546

no increase in expressiveness. Similarly, conjugate transposition can be included in547

JG. ! ; i`;1/.548

Corollary 6.1 Let G and H be two graphs of the same order. Then,549

(1) G"JG. " ;!;1;C;#;�TTHvbŒf ";f 2#/H if and only if G"JG. " ;!;1/H ; and550

(2) G"JG. " ;!;i`;1;C;#;�TTHvbŒf ";f 2#/H if and only if G"JG. " ;i`;1/H .551

Proof (1) We only need to show thatG"JG. " ;!;1/H impliesG"JG. " ;!;1;C;#;�TTHvbŒf ";f 2#/552

H . We have thatG"JG. " ;!;1/H impliesAG !QDQ !AH for a doubly quasi-stochastic553

matrix Q (Proposition 6.3). Furthermore, in the proof of Proposition 6.3 we have554

shown that AH !Q! DQ! !AG where Q! is again a doubly quasi-stochastic matrix.555

Lemmas 5.1, 5.3, 5.4, 5.5 and 6.1 imply that Q-similarity and Q!-similarity are556

preserved by all operations in JG. ! ;!;1;C;%;�TTHvbŒf #;f 2$/.557

(2) We only need to show that G"JG. " ;i`;1/H implies G"JG. " ;!;i`;1;C;#;�TTHvbŒf ";f 2#/558

H . We have that G"JG. " ;i`;1/H implies AG !ODO !AH for an orthogonal quasi-559

stochastic matrixO (Proposition 6.5). We observe thatAH !O! DO! !AG and further-560

more, O! !1DO! !O !1D1. Hence, O! is an orthogonal quasi-stochastic matrix as561

well. Lemmas 5.1, 5.2, 5.3, 5.4, 5.5 and 6.1, imply thatO-similarity andO!-similarity562

are preserved by all operations in JG. ! ; !; i`;1;C;%;�TTHvbŒf #;f 2$/.563

In both cases, we can therefore conclude, by induction on the structure of ex-564

pressions, that for any sentence e.X/, e.AG/ and e.AH / are similar and hence,565

e.AG/De.AH /. ut566

As we will see later, including any other operation from Table 3.1, such as /B�;. !/567

or pointwise function applications on vectors or matrices, allows us to distinguish G4568

and H4. We recall from Example 6.3 that these graphs cannot be distinguished by569

sentences in JG. ! ;!;1/ and JG. ! ; i`;1/.570

7 The impact of the /B�;. !/ operation571

We next consider the operation /B�;. !/ which takes a vector as input and returns572

the diagonal matrix with the input vector on its diagonal. The smallest fragments573

in which vectors (and sentences) can be defined are JG. ! ; i`;1/ and JG. ! ;!;1/.574

Therefore, in this section we consider equivalence with regards to JG. ! ; i`;1;/B�;/575

and JG. ! ;!;1;/B�;/. Using /B�;. !/we can again extract new information from graphs,576

as is illustrated in the following example.577

Example 7.1 Consider graphs G4 ( ) and H4 ( ). In G4 we have vertices of578

degrees 0 and 2, and in H4 we have vertices of degrees 1, 2 and 3. We will count the579
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number of vertices of degree 3. Given that we know that 3 is an upper bound on the580

degrees of vertices in G4 and H4, we consider the sentence Oj/2;`.X/ given by581
582 !

1

6

"
%.1.X//! !

#
/B�;.X !1.X/'0%1.X// ! /B�;.X !1.X/'1%1.X//583

! /B�;.X !1.X/'2%1.X//
$
!1.X/;584

in which we, for convenience, allow addition and scalar multiplications. Each of the585

subexpressions /B�;.X !1.X/'d%1.X//, for dD0;1 and 2, sets the diagonal entry586

corresponding to vertex v to 0 when v has degree d . By taking the product of these587

diagonal matrices, entries that are set to 0 will remain zero in the resulting diagonal588

matrix. This implies that the only non-zero diagonal entries are those corresponding to589

vertices of degree different from 0, 1 and 2. In other words, only for vertices of degree590

3 the diagonal entries carry a non-zero value, i.e., the value 6D.3'0/.3'1/.3'2/.591

By appropriately rescaling by the factor 1
6
, the diagonal entries for the degree three592

vertices are set to 1, and then summed up. Hence, Oj/2;`.X/ indeed counts the593

number vertices of degree three when evaluated on adjacency matrices of graphs594

with vertices of maximal degree 3. Since Oj/2;`.AG4
/D Œ0#¤ Œ1#DOj/2;`.AH4

/595

we can distinguish G4 andH4. We can obtain similar expressions for Od/2;`.X/ for596

arbitrary d , provided that we know the maximal degree of vertices in the graph. The597

way that these expressions are constructed is similar to the so-called Schur-Wielandt598

Principle indicating how to extract entries from a matrix that hold specific values599

by means of pointwise multiplication of matrices (see e.g., Proposition 1.4 in [58]).600

Here, we do not have pointwise matrix multiplication available but since we extract601

information from vectors, pointwise multiplication of vectors is simulated by normal602

matrix multiplication of diagonal matrices with the vectors on their diagonals. ut603

The use of the diagonal matrices and their products as in our example sentence604

Oj/2;`.X/ can also be generalised to obtain information about so-called iterated605

degrees of vertices in graphs, e.g., to identify and/or count vertices that have a number606

of neighbours each of which have neighbours of specific degrees, and so on. Such607

iterated degree information is closely related to equitable partitions and fractional608

isomorphisms of graphs (see e.g., Chapter 6 in [62]). We phrase our results in terms609

of equitable partitions instead of iterated degree sequences.610

7.1 Equitable partitions611

Formally, an equitable partition VDfV1; : : : ;V`g of G is partition of the vertex set612

V of G such that for all i;j D1; : : : ;` and v;v0 2Vi , /2;.v;Vj /D/2;.v0;Vj /. Here,613

/2;.v;Vj / is the number of vertices in Vj that are adjacent to v. In other words, an614

equitable partition is such that the graph is regular within each part, i.e., all vertices615

in a part have the same degree, and is bi-regular between any two different parts, i.e.,616

the number of edges between any two vertices in two different parts is constant. A617

graph always has a trivial equitable partition: simply treat each vertex as a part by its618

own. Most interesting is the coarsest equitable partition of a graph, i.e., the unique619

equitable partition for which any other equitable partition of the graph is a refinement620

thereof [62]. The conditions underlying equitable partitions can be equivalently stated621
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in terms of adjacency matrices and indicator vectors describing the partition. More622

precisely, any partition VDfV1; : : : ;V`g of V can be represented by ` indicator vectors623

1V1
; : : : ;1V`

such that: (i) .1Vi
/v D1 if v2Vi and .1Vi

/v D0 if v 62Vi , for iD1; : : : ;`.624

We observe that 1DP`
iD1 1Vi

due to V being a partition. Then, V is an equitable625

partition if and only if for all i;j D1; : : : ;`,626

/B�;.1Vi
/ !AG !1Vj

D/2;.v;Vj /%1Vi
;627

for some (arbitrary) vertex v2Vi .628

Two graphsG andH are said to have a common equitable partition if there exists an629

equitable partition VDfV1; : : : ;V`g ofG and an equitable partition WDfW1; : : : ;W`g630

of H such that (a) the sizes of the parts agree, i.e., jVi jDjWi j for each iD1; : : : ;`,631

and (b) /2;.v;Vj /D/2;.w;Wj / for any v2Vi and w2Wi and any i;j D1; : : : ;`. We632

note that, due to condition (b), the trivial partition of graphs do not always result in633

a common equitable partition. In other words, not every two graphs have a common634

equitable partition. Proposition 7.1 below characterises when two graphs do have a635

common equitable partition. Furthermore, when two graphs have a common equitable636

partition they also have a common coarsest equitable partition (see e.g., Theorem 6.5.1637

in [62]).638

Equitable partitions naturally arise as the result of the colour refinement proce-639

dure [7,35,69], also known as the 1-dimensional Weisfeiler-Lehman algorithm, used640

as a subroutine in graph isomorphism solvers. Furthermore, there is a close connection641

to the study of fractional isomorphisms of graphs [62,65], as already mentioned in642

the Introduction. We recall: two graphs G andH are said to be fractional isomorphic643

if there exists a doubly stochastic matrix S such that AG !SDS !AH . Furthermore,644

a logical characterisation of graphs with a common equitable partition exists, as is645

stated next.646

Proposition 7.1 (Theorem 1 in Tinhofer [65], Section 4.8 in Immerman and647

Lander [44]) Let G and H be two graphs of the same order. Then, G and H are648

fractional isomorphic if and only if G and H have a common equitable partition if649

and only if G"*2 H . ut650

Example 7.2 The matrix linking the adjacency matrices of G3 ( ) and H3 ( ) in651

Example 6.2 is in fact a doubly stochastic matrix (all its entries are either 0 or 1
2
).652

Hence,G3 andH3 have a common equitable partition, which in this case consists of a653

single part consisting of all vertices. By contrast, graphs G2 ( ) andH2 ( )654

do not have a common equitable partition. Indeed, fractional isomorphic graphs must655

have the same multiset of degrees, i.e., the same multiset consisting of the degrees of656

vertices (Proposition 6.2.6 in [62]), which does not hold for G2 and H2. Indeed, we657

note that there is an isolated vertex in G2 but not inH2. For the same reason, G1 ( )658

and H1 ( ), and G4 ( ) and H4 ( ) are not fractional isomorphic. ut659

To relate equitable partitions to JG. ! ; i`;1;/B�;/- and JG. ! ;!;1;/B�;/-equivalence,660

we show that the presence of /B�;. !/ allows us to formulate a number of expressions,661

denoted by 2[T�`ii .X/, for iD1; : : : ;`, that together extract the coarsest equitable662

partition from a given graph. By applying these expressions on AG and AH , one can663
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Algorithm 1: Computing the coarsest equitable partition based on algorithm GDCR [48].
Input : Adjacency matrix AG of G of dimension n#n.
Output : Indicator vectors of coarsest equitable partition of G.

1 Let B.0/ WD1;
2 Let i D1;
3 while i %n do
4 Let M .i/ WDAG "B.i#1/;
5 Let V.i/ WDfV .i/

1 ; : : : ;V .i/
`i

g a partition such that v;w 2V .i/
j if and only if M .i/

v! DM .i/
w!;

6 Let B.i/ WD Œ1
V

.i/
1

; : : : ;1
V

.i/
`i

";

7 Let i D i C1;
8 Return B.n/.

use sentences to detect whether these partitions witness thatG andH have a common664

equitable partition. In this subsection, L can be either f ! ; i`;1;/B�;g or f ! ;!;1;/B�;g.665

Proposition 7.2 Let G and H be two graphs of the same order. Then, G"JG.L/H666

implies that G and H have a common equitable partition.667

Proof We first show that JG.L/ has sufficient power to compute the coarsest equitable668

partition of a given graphG. In fact, we use addition and scalar multiplication in order669

to compute these partitions. We denote by LC the extension of L with C and %. When670

it comes to the equivalence of graphs, it does not matter whether we consider JG.L/-671

or JG.LC/-equivalence 2. Indeed, expressions in JG.LC/ only use linear (or bilinear)672

operations, i.e., the operations supported in L and C and %. This implies that any673

sentence in JG.LC/ can be written as a linear combination of sentences in JG.L/.674

As a consequence, G"JG.L/H implies G"JG.LC/H . Since G"JG.LC/H trivially675

implies G"JG.L/H , we have that G"JG.LC/H if and only if G"JG.L/H . So, we676

may indeed use expressions in JG.LC/ instead of JG.L/677

To compute the indicator vectors of an equitable partition, we implement the678

algorithm GDCR for finding this partition [48]. We recall this algorithm (in a slightly679

different form than presented in Kersting et al. [48]) in Algorithm 1. In a nutshell, the680

algorithm takes as input AG , the adjacency matrix of G, and returns a matrix whose681

columns hold indicator vectors that represent the coarsest equitable partition of G.682

The algorithm starts, on line 1, by creating a partition consisting of a single part683

containing all vertices, represented by the indicator vector 1, and stored in vector684

B .0/. Then, in the i th step, the current partition is represented by `i$1 indicator vectors685

1V .i#1/
1

; : : : ;1V .i#1/
`i#1

which constitute the columns of matrix B .i$1/. The refinement of686

this partition is then computed in two steps. First, the matrixM .i/ WDAG !B .i$1/ (line687

4) is computed; Second, each 1V .i#1/
j

is refined by putting vertices v andw in the same688

part if and only if they have the same rows inM .i/, i.e., whenM .i/
v! DM .i/

w! holds (line689

5). The corresponding partition V .i/ is then represented by, say `i , indicator vectors690

and stored as the columns of B .i/ (line 6). This is repeated until no further refinement691

2 We remark that we cannot rely yet on the similarity preservation Lemma 5.3 to show that G &JG.LC/ H

if and only if G &JG.L/ H . Indeed, at this point we do not know yet for what kind of matrices T , T -similarity
is preserved by the /B�;. "/-operation. This will only be settled in Lemma 7.1 later in this section.
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of the partition is obtained. At most n iterations are needed. The correctness of the692

algorithm is established in [48]. That is, the resulting indicator vectors represent693

indeed the coarsest equitable partition of G.694

We next detail how a run of the algorithm can be simulated using expressions695

in JG.LC/. Let us fix the adjacency matrix AG . The initialisation step is easy: We696

compute B .0/ by means of the expression b.0/.X/ WD1.X/. Clearly, B .0/ Db.0/.AG/.697

Next, suppose by induction that we have `i$1 expressions b.i$1/
1 .X/; : : : ;b.i$1/

`i#1
.X/698

such that when these expressions are evaluated onAG , they return the indicator vectors699

stored in the columns of B .i$1/. That is, 1V .i#1/
j

Db.i$1/
j .AG/ for all j D1; : : : ;`i$1.700

We next show how the i th iteration is simulated.701

We first compute the `i$1 vectors stored in the columns of M .i/ (line 4). We702

compute these column vectors one at a time. To this aim, we consider expressions703

m.i/
j .X/ WDX !b.i$1/

j .X/; for j D1; : : : ;`i$1:704

Clearly, m.i/
j .AG/DM .i/

!;j , as desired.705

A bit more challenging is the computation of the refined partition in V .i/ (line 5)706

since we need to inspect all columnsM .i/
!;j and identify rows on which all these columns707

agree, as explained above. It is here that the /B�;. !/ operation plays a crucial role.708

Moreover, to compute this refined partition we need to know all values occurring in709

M .i/. The expressions below depend on these values and hence on the input adjacency710

matrix (i.e., different inputs may lead to different values in M .i/).711

Let D.i/
j be the set of values occurring in the column vector M .i/

!;j , for j D712

1; : : : ;`i$1. We compute, by means of an JG.LC/ expression, an indicator vector713

which identifies the rows inM .i/
!;j that hold a specific value c2D.i/

j . This expression is714

similar to the one used in Example 7.1 to extract vertices of degree 3 from the degree715

vector. More precisely, we consider expressions716

1.i/;j
Dc .X/D

 
1Q

c02D.i/
j ;c0¤c.c'c0/

!
%
!% Y

c02D.i/
j ;c0¤c

/B�;
#
m.i/

j .X/'c0%1.X/
$&

!1.X/
"
;717

for the current iteration i , column j in M .i/, and value c2D.i/
j . The correctness of718

these expressions follows from a similar explanation as given in Example 7.1. Given719

these expressions, one can now easily obtain an indicator vector identifying all rows720

in M .i/ that hold a specific value combination .c1; : : : ; c`i#1
/ in their columns, where721

each cj 2D.i/
j , as follows:722

1.i/
D.c1;:::;c`i#1

/.X/D/B�;.1.i/;1
Dc1

.X// ! ! ! ! ! /B�;.1.i/;`i#1

Dc`i#1
.X// !1.X/:723

That is, we simply take the boolean conjunction of all indicator vectors 1.i/;j
Dcj

.X/, for724

j D1; : : : ;`i$1. We note that 1.i/
D.c1;:::;c`i#1

/.AG/ may return the zero vector, i.e., when725

.c1; : : : ; c`i#1
/ does not occur as a row inM .i/. We only need value combinations that726

occur. Suppose that there are `i distinct value combinations .c1; : : : ; c`i#1
/ for which727

1.i/
D.c1;:::;c`i#1

/.AG/ returns a non-zero indicator vector. We denote by b.i/
1 .X/; : : : ;728

b.i/
`i
.X/ the corresponding expressions of the form 1.i/

D.c1;:::;c`i#1
/.X/. It should be729

clear that b.i/
1 .AG/; : : : ;b

.i/
`i
.AG/ are indicator vectors corresponding to the refined730
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partition V .i/ as stored in B .i/. This concludes the simulation of the i th iteration of the731

algorithm.732

Finally, after the nth iteration we define733

2[T�`ii .X/ WDb.n/
i .X/;734

for iD1; : : : ;`n. In the following, we denote `n by `. We remark once more that all735

expressions defined above depend on the input AG , as their definitions rely on the736

values occurring in the matrices M .i/ computed along the way.737

Recall that we want to show that if G"JG.LC/H holds, then G and H have738

a common equitable partition. To this aim we show that vectors 2[T�`ii .AH /, for739

iD1; : : : ;`, correspond to an equitable partition ofH and that this partition, together740

with the one for G represented by 2[T�`ii .AG/, for iD1; : : : ;`, show that G and H741

have a common equitable partition.742

The challenge is to check all this by means of sentences in JG.LC/. Below,743

we provide the description for sentences in JG. ! ;!;1;/B�;;C;%/. We note, how-744

ever, that a minor modification of these sentences suffices such that they belong to745

JG. ! ; i`;1;/B�;;C;%/. Hence, the proof works for JG.L/C-sentences.746

Indeed, in the sentences below we will use conjugate transposition. In particular747

we only use it to sum up entries in a vector. That is, when conjugate transposition is748

used, it is in the form of .1.X//! !e.X/ for some expression e.X/ which evaluates to749

a (column) vector. It now suffices to consider the expression i`./B�;.e.X/// instead750

to turn the JG. ! ;!;1;/B�;;C;%/-sentences into JG. ! ; i`;1;/B�;;C;%/-sentences.751

With this in mind, we refer to the sentences below simply as JG.LC/-sentences752

where L can be either f ! ; i`;1;/B�;g or f ! ;!;1;/B�;g. We will need the following753

sentences.754

1. For each iD1; : : : ;`, we first check whether 2[T�`ii .AH / is also a binary vector755

containing the same number of 1’s as 2[T�`ii .AG/. We note that, by construction756

of the expression 2[T�`ii .X/, 2[T�`ii .AH / returns a real vector. To check whether757

every entry in 2[T�`ii .AH / is either 0 or 1, we show that all of its entries must758

satisfy the equation x.x'1/D0. To this aim, we consider the JG.LC/ sentence759

#BM�`v_/B�;.X/ WD.1.X//! !
#
.X !X'X/ !.X !X'X/

$
!1.X/:760

We claim that ifX is assigned a diagonal real matrix, say%, then #BM�`v_/B�;.%/D761

Œ0# if and only if % is a binary diagonal matrix.762

Indeed, if % is a binary diagonal matrix, then % !%D%, % !%'%DZ, where Z763

is the zero matrix, and hence #BM�`v_/B�;.%/D1i !Z !Z !1D Œ0#. Conversely, sup-764

pose that #BM�`v_/B�;.%/D Œ0#. We observe that .% !%'%/ !.% !%'%/ is a diag-765

onal matrix with squared real numbers on its diagonal. Hence, #BM�`v_/B�;.%/D766

Œ0# implies that the sum of the (squared real) diagonal elements in % !%'% is767

0. This in turn implies that every element on the diagonal in % !%'% must be768

zero. Hence, every element on %’s diagonal must satisfy the equation x2'xD0,769

implying that either xD0 or xD1. As a consequence, % is a binary diagonal770

matrix.771

We observe that #BM�`v_/B�;./B�;.2[T�`ii .AG///D Œ0# since 2[T�`ii .AG/ returns772

an indicator vector. Then, G"JG.LC/H implies that the equality773

#BM�`v_/B�;
#
/B�;.2[T�`ii .AG//

$
D Œ0#D#BM�`v_/B�;

#
/B�;.2[T�`ii .AH //

$
;774
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must hold, for all iD1; : : : ;`. Hence, the matrices /B�;.2[T�`ii .AH // are indeed775

binary and so are its diagonal elements described by 2[T�`ii .AH /, as desired.776

In addition, we also need to check whether 2[T�`ii .AH / has the same num-777

ber of entries set to 1 as 2[T�`ii .AG/. For this, it suffices to consider the sen-778

tence .1.X//! !2[T�`ii .X/. Clearly,G"JG.LC/H implies that 1! !2[T�`ii .AG/D779

1! !2[T�`ii .AH /, for iD1; : : : ;`. Hence, 2[T�`ii .AH / and 2[T�`ii .AG/ contain780

the same number of ones.781

2. We next verify that all indicator vectors 2[T�`ii .AH / combined form a partition of782

the vertex set ofH . To verify this partition condition, we check whether for any two783

different i;j D1; : : : ;`, the entries in the vectors 2[T�`ii .AH / and 2[T�`ij .AH /784

holding a 1 are distinct. This is done by observing that for binary diagonal matrices785

%1 and%2,%1 !%2 holds on its diagonal the conjunction of the binary vectors on786

the diagonals of %1 and %2, respectively. If we want to test that all positions in787

which %1 and %2 carry value 1 are different, %1 !%2 should be the zero matrix788

Z. It now suffices to consider the following sentences789

T�`iBiBQM_i2bii;j .X/ WD.1.X//! ! /B�;.2[T�`ii .X// ! /B�;.2[T�`ij .X// !1.X/;790

for i;j D1; : : : ;` and i¤j . Then, because T�`iBiBQM_i2biij .AG/D Œ0#we have that791

G"JG.LC/H implies that for i;j D1; : : : ;`, i¤j ,792

T�`iBiBQM_i2biij .AG/D Œ0#DT�`iBiBQM_i2biij .AH /:793

Hence, the indicator vectors 2[T�`ii .AH /, for iD1; : : : ;`, are all pairwise disjoint.794

Furthermore, we know that the vectors 2[T�`ii .AG/ form a partition. Since we have795

just shown that 2[T�`ii .AH / and 2[T�`ii .AG/ contain the same number of ones,796

the disjointness of the vectors 2[T�`ii .AH / implies that these also correspond to797

a partition of the vertex set of H .798

To conclude the proof, we argue that the partition WDfW1; : : : ;W`g of H , rep-799

resented by the indicator vectors 2[T�`ii .AH /, is an equitable partition. Moreover,800

consider the equitable partition VDfV1; : : : ;V`g of G, represented by the indicator801

vectors 2[T�`ii .AG/. We show thatG andH have a common equitable partition, given802

by V and W . We observe that we already know that jVi jDjWi j for every iD1; : : : ;`.803

To show that G andH have a common equitable partition, it suffices to show that for804

any i;j D1; : : : ;`, /2;.v;Vj /D/2;.w;Wj / for any v2Vi and any w2Wi .805

3. As already mentioned at the beginning of this section, we can rephrase “being806

equitable” in linear algebra terms. In particular, we know that for any i;j D1; : : : ;`,807

/B�;.2[T�`ii .AG// !AG ! /B�;.2[T�`ij .AG// !1'/2;.v;Vj /%2[T�`ii .AG/808

returns the zero vector, where v is an arbitrary vertex in Vi , the part corresponding809

to the indicator vector 2[T�`ii .AG/. We want to check whether the same condition810

holds for AH . We therefore consider the expression 2[mB_i2bi.X/, given by811

/B�;
%
/B�;.2[T�`ii .X// !X ! /B�;.2[T�`ij .X// !1.X/'/2;.v;Vj /%2[T�`ii .X/

&
812

and check whether, when evaluated on AH , the obtained diagonal matrix is the813

zero matrix. This would imply that also814

/B�;.2[T�`ii .AH // !AH ! /B�;.2[T�`ij .AH // !1'/2;.v;Vj /%2[T�`ii .AH /815
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returns the zero vector. As a consequence, W is an equitable partition of H and816

furthermore, /2;.w;Wj /D/2;.v;Vj /, for any i;j D1; : : : ;` and vertices v2Vi817

andw2Wi . In other words,G andH do indeed have a common equitable partition.818

It rests us only to show that we can check, by means of sentences, whether a819

diagonal matrix is the zero matrix. We use the sentence820

x2`Qi2bi_/B�;.X/ WD.1.X//! !X !X !1.X/;821

for this purpose. A similar argument as for the expression #BM�`v_/B�;.X/ shows822

that the x2`Qi2bi_/B�;.X/ expression returns Œ0# on diagonal real matrices if and823

only if the diagonal matrix is the zero matrix. We here again use that a sum824

of squares equals zero if and only if each summand is zero. Since we have that825

G"JG.LC/H , x2`Qi2bi_/B�;.2[mB_i2bi.AG//D Œ0#Dx2`Qi2bi_/B�;.2[mB_i2bi.AH //,826

as desired.827

As mentioned at the beginning of the proof, the JG.LC/ sentences obtained can828

all be written as a linear combination of sentences in JG.L/. So, we may indeed829

conclude that JG.L/-equivalence of G and H implies that these graphs have a830

common equitable partition. ut831

7.2 Characterisation of JG. ! ;!;1;/B�;/-equivalence832

We first consider the characterisation of JG. ! ;!;1;/B�;/-equivalence. We have just833

shown that two JG. ! ;!;1;/B�;/-equivalent graphs have a common equitable partition.834

The converse also holds, as will be shown next.835

Proposition 7.3 Let G and H be two graphs of the same order. If G and H have836

a common equitable partition, then e.AG/De.AH / for every sentence e.X/ in837

JG. ! ;!;1;/B�;/.838

Proof By assumption,G andH have a common equitable partition. As a consequence,839

they also have a common (unique) coarsest equitable partition (see e.g., Theorem840

6.5.1 in [62]). Let VDfV1; : : : ;V`g and WDfW1; : : : ;W`g be the common coarsest841

equitable partitions of G and H , respectively. As before, we denote by 1Vi
and 1Wi

,842

for iD1; : : : ;`, the corresponding indicator vectors. We know from Proposition 7.1843

that there exists a doubly stochastic matrix S such that AG !SDS !AH . As previously844

observed, also AH !S! DS! !AG holds, where S! is again doubly stochastic. Then,845

Lemmas 5.1, 5.4 and 6.1 imply that S -similarity and S!-similarity are preserved by846

matrix multiplication, complex conjugate transposition, and the one-vector operation.847

To conclude that G"JG. " ;!;1;/B�;/H holds, we verify that the /B�;. !/ operations also848

preserves S - and S!-similarity. We rely on a more general result (Lemma 7.1 below),849

which states that T -similarity, for a matrix T , is preserved by the /B�;. !/ operation850

provided that T is doubly quasi-stochastic and compatible with the common coarsest851

equitable partitions of G and H . We again separate this lemma from the current852

proof because we need it later in the paper. The compatibility condition refers to a853

block structure condition on matrices. More precisely, if G and H have a common854

equitable partition, then consider the common coarsest equitable partitions described855
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by the indicator vectors 1Vi
and 1Wi

for G and H , respectively. A matrix T is now856

said to be compatible with respect to 1Vi
and 1Wi

, for iD1; : : : ;`, if857

/B�;.1Vi
/ !T DT ! /B�;.1Wi

/;858

for iD1; : : : ;`. That is, T has a block structure determined by the partitions and859

only has non-zero blocks for blocks corresponding to the same parts in the equitable860

partitions. When considering the doubly stochastic matrix S such thatAG !SDS !AH861

holds, the matrix S can be assumed to be compatible in the above sense. To see this,862

we recall from the proof of Theorem 6.5.1 in [62] that we can take S to be such863

that for i¤j , /B�;.1Vi
/ !S ! /B�;.1Wj

/ is the jVi j%jWj j zero matrix, and for iDj ,864

/B�;.1Vi
/ !S ! /B�;.1Wi

/ is the square jVi j%jWi j matrix in which all entries are equal865

to 1
jVi j .866

As a consequence, if e1.AG/ and e1.AH / are S -similar, then Lemma 7.1 implies867

that /B�;.e1.AG// and /B�;.e1.AH // are S -similar. We also note that /B�;.1Wi
/ !S! D868

S! ! /B�;.1Vi
/. So S! is compatible with 1Wi

and 1Vi
. An inductive argument then869

shows that e.AG/ and e.AH / are S -similar (and thus equal) for any sentence e.X/ in870

JG. ! ;!;1;/B�;/, as desired. ut871

To show that similarity, by means doubly quasi-stochastic matrices that are com-872

patible with respect to the common coarsest equitable partitions, is indeed preserved873

by the /B�;. !/ operation, requires a bit more work than our previous similarity preser-874

vation results. More precisely, we need that vectors obtained by evaluating expressions875

in JG. ! ;!;1;/B�;/ can be written in a canonical way in terms of the indicator vectors876

representing the common coarsest equitable partitions of the graphs. We state this877

requirement for general matrix query languages, as follows.878

Let JG.L/ be a matrix query language. Let G be a graph with equitable partition879

VDfV1; : : : ;V`g and let 1V1
; : : : ;1V`

be the corresponding indicator vectors. We say880

that JG.L/-vectors are constant on equitable partitions if for any expression e.X/2881

JG.L/ such that e.AG/ is an n%1-vector, then882

e.AG/D
X̀

iD1

ai %1Vi
(7.1)883

for scalars ai 2. Intuitively, this condition is important for the /B�;. !/ operation since884

it takes a vector as input and the linear combination (7.1) allows one to only reason885

about (linear combinations of) diagonal matrices obtained by the indicator vectors886

of the equitable partitions. Compatibility implies similarity preservation for such887

(indicator vector-based) diagonal matrices, which can then be lifted, due to linearity,888

to similarity of arbitrary diagonal matrices.889

Lemma 7.1 Let G and H be two graphs of the same order which have a common890

equitable partition. Let JG.L/ be a matrix query language fragment such that JG.L/-891

vectors are constant on equitable partitions. Let T be a doubly quasi-stochastic matrix892

which is compatible with the coarsest common equitable partitions of G and H . Let893

e.X/ be an expression in JG.L/. Then, if e.AG/ and e.AH / are T -similar, then also894

/B�;.e.AG// and /B�;.e.AH // are T -similar.895

Proof Let e.X/ be an expression in JG.L/. Consider now e0.X/ WD/B�;.e.X//. We896

distinguish between two cases, depending on the dimensions of e.AG/. First, if e.AG/897
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is a sentence then we know by induction that e.AG/De.AH /. Hence,898

e0.AG/D/B�;.e.AG//De.AG/De.AH /D/B�;.e.AH //De0.AH /:899

Next, if e.AG/ is a vector, then we know that e.AG/DT !e.AH / and furthermore,900

since JG.L/-vectors are constant on equitable partitions, that e.AG/D
P`

iD1 ai %1Vi
901

and e.AH /D
P`

iD1 bi %1Wi
. We first show that ai Dbi , for iD1; : : : ;`. Indeed, since902

T !1D1 and T is compatible with 1Vi
and 1Wi

, we have that903

1Vi
D/B�;.1Vi

/ !1D/B�;.1Vi
/ !T !1DT ! /B�;.1Wi

/ !1DT !1Wi
:904

As a consequence, using that 1i
Vi

!1Vj
is 0 if i¤j and jVi j if iDj , we obtain905

ai %jVi jD1i
Vi

!e.AG/D1i
Vi

!T !e.AH /906

D
X̀

j D1

bj %.1i
Vi

!T !1Wj
/Dbi %jWi j;907

for all iD1; : : : ;`. Since jVi jDjWi j¤0, we indeed have that ai Dbi for all iD1; : : : ;`.908

We may now conclude that909

e0.AG/ !T D/B�;.e.AG// !T D
X̀

iD1

ai %./B�;.1Vi
/ !T /910

D
X̀

iD1

ai %.T ! /B�;.1Wi
//DT ! /B�;.e.AH //DT !e0.AH /:911

Hence e0.AG/ and e0.AH / are indeed T -similar. ut912

In the context of Proposition 7.3, i.e., to show that the /B�;. !/ operation preserves913

S -similarity (and S!-similarity), we need to verify that JG. ! ;!;1;/B�;/-vectors are914

constant on equitable partitions. We verify this, in the appendix, by induction on the915

structure of expressions in JG. ! ;!;1;/B�;/. The key insight is that the base case for916

the induction, when e.X/DX , holds by the assumption thatG andH have a common917

coarsest equitable partition. In fact, we more generally show the following.918

Proposition 7.4 JG. ! ;!; i`;1;/B�;;C;%;�TTHvbŒf #;f 2$/-vectors are constant on919

equitable partitions. ut920

All combined, we obtain the following characterisations.921

Theorem 7.1 LetG andH be two graphs of the same order. Then,G"JG. " ;!;1;/B�;/H922

if and only if there is doubly stochastic matrix S such that AG !SDS !AH if and only923

if G"*2 H if and only if G and H have a common equitable partition. ut924

Proof This is a direct consequence of Propositions 7.1, 7.2 and 7.3. ut925

As a consequence, following Example 7.2, sentences in JG. ! ;! ;1;/B�;/ can926

distinguishG1 ( ) andH1 ( ),G2 ( ) andH2 ( ),G4 ( ) andH4 ( ),927

because all these pairs of graphs do not have a common equitable partition. By contrast,928

G3 ( ) and H3 ( ) cannot be distinguished by sentences in JG. ! ;! ;1;/B�;/.929

We remark that G"JG. " ;!;1;/B�;/H if and only if G"JG. " ;!;1;/B�;;C;#;�TTHvbŒf ";f 2#/930

H . This is again a direct consequence of the fact that G"JG. " ;!;1;/B�;/H implies that931
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AG !SDS !AH , AH !S! DS! !AG , and that all operations in JG. ! ;! ;1;/B�;;C;%;932

�TTHvbŒf #;f 2$/ preserve S -similarity and S!-similarity.933

7.3 Characterisation of JG. ! ; i`;1;/B�;/-equivalence934

We next consider JG. ! ; i`;1;/B�;/-equivalence. We already know a couple of impli-935

cations when G"JG. " ;i`;1;/B�;/H holds. For example, there must exist an orthogonal936

matrixO such thatO !1D1 and AG !ODO !AH (Propositions 6.4 and 6.5). Further-937

more, we know that G and H must have a common equitable partition and hence,938

there exists a doubly stochastic matrix S such that AG !SDS !AH (Proposition 7.1).939

It is tempting to conjecture that G"JG. " ;i`;1;/B�;/H if and only if there exists an or-940

thogonal doubly stochastic matrix O such that AG !ODO !AH . This does not hold,941

however. Indeed, invertible doubly stochastic matrices are necessarily permutation942

matrices [27]. Then, AG !ODO !AH would imply that G and H are isomorphic,943

contradicting that our fragments cannot go beyond *3-equivalence [10]. Instead, we944

have the following characterisation.945

Theorem 7.2 Let G and H be two graphs of the same order. Then the following946

hold: G"JG. " ;i`;1;/B�;/H if and only if G and H have a common equitable partition947

and AG !ODO !AH for some doubly quasi-stochastic orthogonal matrix O which is948

compatible with the common coarsest equitable partition of G and H .949

Proof To show that the existence of a matrixO , as stated in the Theorem, implies that950

G"JG. " ;i`;1;/B�;/H , we argue as before. More precisely, we show that O-similarity951

is preserved by the operations in JG. ! ; i`;1;/B�;/. This is, however, a direct conse-952

quence of Lemmas 5.1, 5.2, 6.1 and 7.1. We remark that Proposition 7.4 guarantees953

that Lemma 7.1 can be applied. Indeed, Proposition 7.4 implies that JG. ! ; i`;1;/B�;/-954

vectors are constant on equitable partitions. We may thus conclude that all expressions955

in JG. ! ; i`;1;/B�;/ preserve O-similarity. Hence, e.AG/De.AH / for any sentence956

e.X/ in JG. ! ; i`;1;/B�;/.957

For the converse direction, we need to show that G"JG. " ;i`;1;/B�;/H implies that958

there exists an orthogonal matrixO such that AG !ODO !AH , and whereO satisfies959

the conditions mentioned in the statement of the Theorem.960

The existence of the orthogonal matrix O is shown using Specht’s Theorem (see961

e.g., [45]), which we recall next. Let ADfA1; : : : ;Apg and BDfB1; : : : ;Bpg be two962

sets of complex matrices that are closed under complex conjugate transposition. The963

sets A and B are called simultaneously unitary equivalent if there exists a unitary ma-964

trix U such that Ai !U DU !Bi , for iD1; : : : ;p. Here, a unitary matrix U is such that965

U ! !U DU !U ! DI ; it is the complex analogue of a real orthogonal matrix. Specht’s966

Theorem provides a means of checking simultaneous unitary equivalence in terms967

of trace identities. Indeed, Specht’s Theorem states that A and B are simultaneously968

unitary equivalent if and only if969

i`.w.A1; : : : ;Ap//D i`.w.B1; : : : ;Bp//;970

for all wordsw.x1; : : : ;xp/ over the alphabet fx1; : : : ;xpg. In expressionw.A1; : : : ;Ap/971

we instantiated xi with Ai and interpret concatenation in the word w as matrix972
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multiplication; Similarly forw.B1; : : : ;Bp/. Specht’s Theorem also holds whenA and973

B are real matrices and similarity is expressed in terms of orthogonal matrices [45].974

The required condition is that A and B are closed under transposition. We will975

rephrase the conditions required for O , i.e., that it is a doubly quasi-stochastic matrix976

which is compatible with a common equitable partition of G and H , in terms of977

such trace identities. We note that a similar approach is taken by Thüne [64] in the978

context of characterising the equivalence of graphs with regards to their 1-dimensional979

Weisfeiler-Lehman closure.980

We start by defining the setsA andB. Consider the following sets of real symmetric981

matrices:A WDfAG ;J g[f/B�;.1Vi
/ j iD1; : : : ;`g andB WDfAH ;J g[f/B�;.1Wi

/ j iD982

1; : : : ;`g, where 1Vi
and 1Wi

denote the indicator vectors corresponding to the coarsest983

common equitable partitions in G and H , respectively. We observe that A and B are984

closed under transposition. By the real counterpart of Specht’s Theorem we can check985

whether there exists an orthogonal matrix O such that986

AG !ODO !AH (7.2)987

J !ODO !J (7.3)988

/B�;.1Vi
/ !ODO ! /B�;.1Wi

/; (7.4)989

hold, for iD1; : : : ;`, in terms of trace identities. It is clear that conditions (7.2)990

and (7.4) express that AG and AH must be O-similar and that O must be compatible991

with the coarsest common equitable partition of G and H . The orthogonality of992

O is implied by Specht’s Theorem. Condition (7.3) ensures that O !1D1. To see993

this, we modify the proof of Lemma 4 in Thüne [64], stated for unitary matrices,994

so that it holds for orthogonal matrices. We first observe that 1 is an eigenvector of995

O . Indeed, J !O !1D1 !.1i !O !1/D˛%1 with ˛D1i !O !1 and J !O !1DO !J !1D996

.1i !1/%O !1. In other words, O !1D ˛
n

%1 since 1i !1Dn. Furthermore, because997

1i !Oi !1 is a scalar,1i !Oi !1D.1i !Oi !1/i D1i !O !1D˛. We next show that˛D˙n.998

Indeed, since O is an orthogonal matrix999

nD1i !I !1D1i !Oi !O !1D ˛

n
%.1i !Oi !1/D ˛2

n
;1000

and thus ˛2 Dn2 or ˛D˙n. Hence,O !1D˙1. WhenO !1D1,O is already doubly1001

quasi-stochastic. In case that O !1D'1, we simply replace O by .'1/%O to obtain1002

thatO !1D1. This rescaling does not impact the validity of conditions (7.2) and (7.4).1003

Hence, O can indeed be assumed to be doubly quasi-stochastic.1004

It remains to show that the trace identities implying the existence of an orthogonal1005

O satisfying conditions (7.2), (7.3) and (7.4) can be expressed in JG. ! ; i`;1;/B�;/.1006

For every word w.x;j;b1; : : : ;b`/ we consider the sentence1007

ew.X/ WD i`.w.X;1.X/ !.1.X//!;/B�;.2[T�`i1.X//; : : : ;/B�;.2[T�`i`.X////;1008

in which variables x;j;b1; : : : ;b` are assigned to matrix variable X , expression1009

1.X/ !.1.X//! in JG. ! ;!;1/, and /B�;.2[T�`ii .X//, for iD1; : : : ;`, respectively.1010

Here, the expressions 2[T�`ii .X/ correspond to the expressions extracting the indi-1011

cator vectors of the coarsest equitable partition of a graph, as defined in the proof1012

of Proposition 7.2. We recall from that proof that 2[T�`ii .X/ are defined by using1013

addition and scalar multiplication. As a consequence, the sentences ew.X/ belong1014

to JG. ! ;!; i`;1;/B�;;C;%/. Nevertheless, we next argue that G"JG. " ;i`;1;/B�;/H im-1015
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plies that ew.AG/Dew.AH / for every word w. First, we observe that the use of1016

complex conjugate transposition in the sentences ew.X/ is very restricted. Indeed,1017

it only occurs in the form .1.X//!. So, we may assume that ew.X/ is a sentence in1018

JG. ! ; i`;1;1i;/B�;;C;%/, where 1i. !/ is the operation that returns the transpose of1019

1. !/. Second, just as in the proof of Proposition 7.2, we note that the sentences ew.X/1020

only use multilinear operations, and thus can be written as a linear combination of1021

sentences in JG. ! ; i`;1;1i;/B�;/. As a consequence, G"JG. " ;i`;1;1i;/B�;/H implies1022

already that ew.AG/Dew.AH /. It remains to show that G"JG. " ;i`;1;/B�;/H implies1023

G"JG. " ;i`;1;1i;/B�;/H . We prove this in the appendix. Intuitively, in a sentence e.X/1024

in JG. ! ; i`;1;1i;/B�;/ every occurrence of 1i.X/ appears in a sub-sentence of the1025

form 1i.X/ !e0.X/ !1.X/ where e0.X/ does not contain the 1i. !/ operation. Since we1026

can replace 1i.X/ !e0.X/ !1.X/ by i`./B�;.e0.X/ !1.X// we can find an equivalent1027

expression for e.X/which does not use 1i. !/. Hence, e.X/ is equivalent to a sentence1028

in JG. ! ; i`;1;/B�;/. Details of this rewriting procedure can be found in the appendix.1029

ut1030

Note that G"JG. " ;i`;1;/B�;/H implies G"JG. " ;!;1;/B�;/H . The converse does not1031

hold.1032

Example 7.3 Consider G3 ( ) and H3 ( ). These graphs are fractional isomor-1033

phic but are not co-spectral. Hence, G3 6"JG. " ;i`;1;/B�;/H3 since JG. ! ; i`;1;/B�;/-1034

equivalence implies co-spectrality. On the other hand, G5 ( ) andH5 ( ) are1035

co-spectral regular graphs [67], with co-spectral complements, and whose common1036

equitable partition consists of a single part containing all vertices. In fact, the common1037

equitable partitions of G5 and H5 consist of the partitions consisting of all vertices1038

(this holds more generally for any regular graph). Furthermore, since AG5
and AH5

1039

share 1 as eigenvector (with eigenvalue 4). We know from before that there exists1040

an orthogonal matrix O such that AG5
!ODO !AH5

and O !1D1 (this follows from1041

being co-spectral and co-main). Moreover, the compatibility requirement is vacu-1042

ously satisfied since it requires /B�;.1/ !ODO ! /B�;.1/. Hence, G5 and H5 cannot1043

be distinguished by JG. ! ; i`;1;/B�;/ by Theorem 7.2. ut1044

We remark thatG"JG. " ;i`;1;/B�;/H if and only ifG"JG. " ;!;i`;1;/B�;;C;#;�TTHvbŒf ";f 2#/1045

H . This is again a direct consequence of the fact that G"JG. " ;i`;1;/B�;/H implies that1046

AG !ODO !AH , AH !O! DO! !AG , for an orthogonal doubly quasi-stochastic ma-1047

trix O which is compatible with the coarsest common equitable partitions of G1048

andH , and that all operations in JG. ! ;! ; i`;1;/B�;;C;%;�TTHvbŒf #;f 2$/ preserve1049

O-similarity and O!-similarity.1050

7.4 Pointwise function applications on vectors1051

A crucial ingredient for obtaining characterisations of equivalence in the presence1052

of the /B�;. !/ operation is that vectors are constant on equitable partitions (Propo-1053

sition 7.4 and Lemma 7.1). In this way, vectors obtained by evaluating expressions1054

on AG and AH are “almost” the same, up to the use of indicator vectors (see equa-1055

tion (7.1)). We next show that this tight relationship among vectors allows us to extend1056
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the matrix query languages considered in this section with pointwise function appli-1057

cations on vectors. More precisely, we denote by �TTHvpŒf #, for f 2$, that we only1058

allow function applications of the form e.X/ WD�TTHvpŒf #.e1.X/; : : : ; ep.X// where1059

each ei .X/ returns a vector when evaluated on a matrix.1060

Proposition 7.5 Let G and H be two graphs of the same order.1061

(1) G"JG. " ;!;1;/B�;/H if and only if G"JG. " ;!;1;/B�;;C;#;�TTHvbŒf ";�TTHvpŒf ";f 2#/H .1062

(2) G"JG. " ;i`;1;/B�;/H if and only if G"JG. " ;!;i`;1;/B�;;C;#;�TTHvbŒf ";�TTHvpŒf ";f 2#/H .1063

Proof In view of the previous results, it suffices to show that (1) JG. ! ;!;1;/B�;;C;%;1064

�TTHvbŒf #;f 2$/-equivalence implies JG. ! ;!;1;/B�;;C;%;�TTHvbŒf #;�TTHvpŒf #;f 21065

$/-equivalence; and (2) JG. ! ;!; i`;1;/B�;;C;%; �TTHvbŒf #;f 2$/-equivalence im-1066

plies JG. ! ;!; i`;1;/B�;;C;%; �TTHvbŒf #;�TTHvpŒf #;f 2$/-equivalence. Both impli-1067

cation follow if we can show that JG. ! ;!; i`;1;/B�;;C;%;�TTHvbŒf #�TTHvpŒf #;f 21068

$/-vectors are constant on equitable partitions and that �TTHvpŒf #, for f 2$, pre-1069

serves similarity of quasi doubly-stochastic matrices that are compatible with the1070

common coarsest equitable partition of G and H .1071

For conciseness, let L% denote the f ! ;!; i`;1;/B�;;C;%;�TTHvbŒf #�TTHvpŒf #;f 21072

$g, i.e., L% consists of all operations considered so far. Proposition 7.4 trivially1073

generalizes to JG.L%/-vectors. Indeed, it suffices to show consider the case. Let1074

e.X/ WD�TTHvpŒf #.e1.X/; : : : ; ep.X//, where e1.X/; : : : ; ep.X/ are expressions in1075

JG.L%/ such that each ei .AG/ returns a vector. We may assume by induction that for1076

iD1; : : : ;p, ei .AG/D
P`

j D1 a
.i/
j %1Vi

for scalars a.i/
j 2, for j D1; : : : ;`. Since the sets1077

of entries in the indicator vectors holding value 1 are disjoint for any two different1078

indicator vectors and that the vectors on which f is applied have the same constant1079

for every entry in the same part, we have that1080

e.AG/D
X̀

iD1

�TTHvbŒf #
#
a.1/

i ; : : : ;a.p/
i /%1Vi

:1081

So, indeed, JG.L%/-vectors are constant on equitable partitions.1082

That T -similarity is also preserved by pointwise function applications on vectors1083

now follows easily. Indeed, consider e.X/ WD�TTHvpŒf #.e1.X/; : : : ; ep.X//. By as-1084

sumption, ei .AG/DT !ei .AH / for all iD1; : : : ;p. Furthermore, ei .AG/D
P`

j D1 a
.i/
j %1085

1Vi
and ei .AH /D

P`
j D1 b

.i/
j %1Wi

. We have seen in the proof of Lemma 7.1 that T -1086

similarity of these vectors implies a.i/
j Db.i/

j for j D1; : : : ;` and iD1; : : : ;p. As a1087

consequence, e.AG/ is equal to1088

�TTHvpŒf #.e1.AG/; : : : ; ep.AG//D
X̀

iD1

�TTHvbŒf #
#
a.1/

i ; : : : ;a.p/
i /%1Vi

1089

D
X̀

iD1

�TTHvbŒf #
#
a.1/

i ; : : : ;a.p/
i /%.T !1Wi

/1090

DT ! �TTHvpŒf #.e1.AH /; : : : ; ep.AH //;1091

which is equal to T !e.AH /, as desired. ut1092
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Going back to the graphsG5 ( ) andH5 ( ) in Example 7.3, these cannot1093

even be distinguished by sentences in the large fragments in Proposition 7.5. In the1094

next section, we show that by allowing pointwise function applications on matrices1095

(the only operation in Table 3.1 which we did not consider yet), we can distinguish1096

these graphs.1097

8 The impact of pointwise multiplication on vectors1098

In the preceding section the main use of the /B�;. !/ operation related to the construc-1099

tion of the coarsest equitable partition (see e.g., the proof of Proposition 7.2) and more1100

specifically, to the ability to pointwise multiply two vectors (see e.g., Example 7.1).1101

Of course, there is more that one can achieve by means of the /B�;. !/ operation, espe-1102

cially in combination with the trace operation. In the following, we denote pointwise1103

vector multiplication by the operation ˇv and investigate how fragments supporting1104

ˇv differ from those supporting /B�;. !/.1105

Example 8.1 Consider the graphs G6 ( ) and H6 ( ). On can verify that1106

these graphs are co-spectral and have a common equitable partition (and thus also1107

have co-spectral complements). Using the diagonal operation we can construct the1108

Laplacian of a graph by simply considering expression L.X/ WD./B�;.X !1.X//'X .1109

It is now easy to detect that G6 and H6 have Laplacians that are not co-spectral.1110

Indeed, consider the JG. ! ; i`;1;/B�;;C;%/ expression eL;k.X/ WD i`.L.X/k/. Then,1111

we can check that eL;3.AG6
/D1602¤1618DeL;3.AH6

/. The relation between co-1112

spectrality and traces of powers of matrices (cfr. Proposition 5.1) holds more generally1113

for symmetric matrices (this follows easily from the real version of Specht’s Theorem1114

used in the proof of Theorem 7.2). Hence, we can infer that the Laplacians of G6 and1115

H6 are not co-spectral. Another way of verifying this is thatG6 andH6 have a different1116

number of spanning trees (192 versus 160) and Kirchhoff’s matrix tree theorem (see1117

e.g., Proposition 1.3.4 in [12]) implies that graphs with co-spectral Laplacians must1118

have the same number of spanning trees. Hence, G6 and H6 can be distinguished by1119

JG. ! ; i`;1;/B�;;C;%/ (and also by sentences in JG. ! ; i`;1;/B�;/ since all operations1120

in JG. ! ; i`;1;/B�;;C;%/ are linear). Nevertheless, we will see thatG6 andH6 cannot1121

be distinguished by sentences in JG. ! ; i`;1;1i;ˇv/3. More generally, we show that1122

two graphs are JG. ! ; i`;1;1i;ˇv/-equivalent if and only if they are co-spectral and1123

have a common equitable partition (Proposition 8.4 below). ut1124

In fact, it is for fragments that support the trace and /B�;. !/ operation that one1125

observes an increase in expressive power compared to fragments supporting the trace1126

and ˇv operation. Indeed, when considering JG. ! ;!;1;/B�;/, which does not support1127

the trace operation, one can equivalently use ˇv instead of /B�;. !/.1128

Proposition 8.1 LetG andH be two graphs of the same order. Then,G"JG. " ;!;1;ˇv/1129

H if and only if G"JG. " ;!;1;/B�;/H .1130

3 It was incorrectly stated in the conference version that pointwise vector multiplication was equally
powerful as the /B�;. "/ operation.
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Proof The proof is by a straightforward translation between sentences in the two1131

fragments. Indeed, let e1.X/ and e2.X/ be two expressions in JG. ! ;!;1;/B�;/ which1132

evaluate to vectors (on input matrices). Then, e1.X/ˇve2.X/ is equivalent to the1133

JG. ! ;!;1;/B�;/ expression /B�;.e1.X// ! /B�;.e2.X// !1.X/. This implies that we1134

can inductively replace all occurrences of ˇv in an expression in JG. ! ;!;1;ˇv/ by1135

expressions in JG. ! ;!;1;/B�;/. So, every expression e.X/ in JG. ! ;!;1;ˇv/ is equiv-1136

alent to an expression e0.X/ in JG. ! ;!;1;/B�;/. As a consequence,G"JG. " ;!;1;/B�;/H1137

implies G"JG. " ;!;1;ˇv/H .1138

For the opposite direction, consider a sentence e.X/ in JG. ! ;!;1;/B�;/. One can1139

assume such a sentence to be of the form .1.e1.X///
! !e2.X/ !1.e3.X// for some1140

JG. ! ;!;1;/B�;/ expressions e1.X/, e2.X/ and e3.X/. Moreover, we can always1141

replace 1.e1.X// by either 1.X/ or 1.1.X/!/ (depending on whether e1.X/ evalu-1142

ates to a matrix or a row vector). Similarly for 1.e3.X//. We can thus assume that1143

only e2.X/ may have occurrences of the /B�;. !/ operation. We here treat the case1144

when e.X/D.1.X//! !e21.X/ ! /B�;.e22.X// !e23.X/ !1.X/ for JG. ! ;!;1;/B�;/ ex-1145

pressions e21.X/, e22.X/ and e23.X/. The other cases can be dealt with in a simi-1146

lar way. It now suffices to observe that /B�;.e22.X// !e23.X/ !1.X/ is equivalent to1147

e22.X/ˇv .e23.X/ !1.X//. Hence, we have removed one occurrence of the /B�;. !/1148

operation in e.X/ and replaced it by an occurrence of ˇv . We can proceed in this way1149

to obtain an expression e0.X/ in JG. ! ;!;1;ˇv/ which is equivalent to e.X/. Hence,1150

also G"JG. " ;!;1;ˇv/H implies G"JG. " ;!;1;/B�;/H . ut1151

The above proof fails when the trace operation is present. The reason is that1152

we can have sentences like eL;k.X/ in Example 8.1 which are not of the form1153

.1.X//! !e.X/ !1.X/. For such sentences, the /B�;. !/ operation cannot be simply1154

replaced by pointwise vector multiplication.1155

We next consider JG. ! ; i`;1i;1;ˇv/ . Here, we incorporate the 1i. !/ operation,1156

introduced in the proof of Theorem 7.2, in order for the trace operation to also1157

interact with matrices formed by vectors (e.g., one can formulate expressions like1158

i`.e1.X/ !.e2.X//
i/, where e1.X/ and e2.X/ evaluate to vectors). We recall from the1159

proof of Theorem 7.2 that G"JG. " ;i`;1;/B�;/H if and only if G"JG. " ;i`;1i;1;/B�;/H .1160

Using the translation from ˇv into an expression involving the /B�;. !/ operation,1161

as in the proof of Proposition 8.1, it then follows that G"JG. " ;i`;1;/B�;/H implies1162

G"JG. " ;i`;1i;1;ˇv/H . We show that the implication from G"JG. " ;i`;1i;1;ˇv/H to1163

G"JG. " ;i`;1;/B�;/H does not hold, as anticipated in Example 8.1.1164

To analyse the distinguishability of graphs by sentences in JG. ! ; i`;1i;1;ˇv/ we1165

follow the same approach as for JG. ! ; i`;1;/B�;/.1166

Proposition 8.2 LetG andH be two graphs of the same order. Then,G"JG. " ;i`;1i;1;ˇv/1167

H implies that G and H have a common equitable partition.1168

Proof In the proof of Proposition 7.2 we constructed a set† of sentences in JG. ! ;!;1;1169

/B�;/ such that when e.AG/De.AH / holds, for all e.X/2†, thenG andH must have1170

a common equitable partition. A close inspection of these sentences shows that we only1171

need complex conjugate transposition (!) in the form of .1.X//!. We may thus safely1172

replace .1.X//! by 1i.X/ in the sentences in†. We next carry out the translation from1173

sentences in†, as described in the proof of Proposition 8.1, to replace the occurrences1174
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of /B�;. !/ by ˇv . Let us denote by †0 the set of JG. ! ; i`;1i;1;ˇv/ obtained from1175

† in this way. Then clearly, when e0.AG/De0.AH / holds for all e0.X/2†0, we have1176

that G and H have a common equitable partition, as desired. ut1177

Furthermore, we can add pointwise vector multiplication to the list of operations1178

in Proposition 7.4:1179

Proposition 8.3 JG. ! ;!; i`;1;/B�;;ˇv;/B�;;C;%;�TTHvbŒf #;f 2$/-vectors are con-1180

stant on equitable partitions.1181

Proof We verify that ˇv can be added in the appendix. ut1182

It remains to identify an appropriate notion of similarity for pointwise vector1183

multiplication. Let G and H be two graphs that have a common equitable partition.1184

As before, let VDfV1; : : : ;V`g and WDfW1; : : : ;W`g be such common partitions of1185

G and H , respectively. The corresponding indicator vectors are denoted by 1Vi
and1186

1Wi
, for iD1; : : : ;`, respectively. We say that a matrix T preserves the coarsest eq-1187

uitable partitions of G and H if 1Vi
DT !1Wi

and T i !1Vi
D1Wi

, for iD1; : : : ;`. We1188

note that this condition is weaker than the compatibility notion used before (see the1189

proof of Lemma 7.1 were we verified the preservation of the coarsest common equi-1190

table partitions for matrices that are compatible with the common coarsest equitable1191

partition).1192

Lemma 8.1 Let G and H be two graphs of the same order which have a common1193

equitable partition. Let JG.L/ be a matrix query language such that JG.L/-vectors1194

are constant on equitable partitions. Let T be a matrix which preserves the coarsest1195

equitable partitions of G and H . Let e1.X/ and e2.X/ be expressions in JG.L/1196

which evaluate to vectors. Then, if e1.AG/ and e1.AH / are T -similar, and e2.AG/1197

and e2.AH / are T -similar, then also e1.AG/ˇve2.AG/ and e1.AH /ˇve2.AH / are1198

T -similar.1199

Proof The proof is similar to the proof of Lemma 7.1. Let e1.X/ and e2.X/ be1200

two expressions in JG.L/. Consider now e0.X/ WDe1.X/ˇve2.X/. We distinguish1201

between three cases, depending on the dimensions of e.AG/. First, if e.AG/ is a1202

sentence then we know by induction that e1.AG/De1.AH / and e2.AG/De2.AH /.1203

Hence,1204

e0.AG/De1.AG/ˇve2.AG/De1.AG/ !e2.AG/1205

De1.AH / !e2.AH /De1.AH /ˇve2.AH /De0.AH /:1206

Next, if e1.AG/ and e2.AG/ are (column) vectors, then we know that e1.AG/D1207

T !e1.AH / and e2.AG/DT !e2.AH /. We argued in the proof of Lemma 7.1 that1208

when 1Vi
DT !1Wi

holds for iD1; : : : ;`, then since vectors are constant on equitable1209

partitions, e1.AG/D
P`

iD1 ai %1Vi
DP`

iD1 ai %.T !1Wi
/DT !e1.AH / and e2.AG/D1210 P`

iD1 bi %1Vi
DP`

iD1 bi %.T !1Wi
/DT !e2.AH /. We may now conclude that1211

e0.AG/De1.AG/ˇve2.AG/D
X̀

iD1

.ai %bi /%1Vi
D
X̀

iD1

.ai %bi /%.T !1Wi
/1212

DT !
#X̀

iD1

.ai %bi /%1Wi
/
$
DT !.e1.AH /ˇve2.AH //DT !e0.AH /:1213
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Hence, e0.AG/ and e0.AH / are indeed T -similar. The case when e1.AG/ and e2.AG/1214

are row vectors is treated similarly, using that T i !1Vi
D1Wi

, for iD1; : : : ;`. ut1215

We can now state a characterisation of JG. ! ; i`;1;1i;ˇv/-equivalence.1216

Theorem 8.1 LetG andH be two graphs of the same order. Then,G"JG. " ;i`;1;1i;ˇv/1217

H if and only if there exists an orthogonal matrix O which preserves the coarsest1218

equitable partitions of G and H and such that AG !ODO !AH .1219

Proof To show that the existence of a matrix O , as stated in the Theorem, implies1220

G"JG. " ;i`;1;1i;/B�;/H , we argue as before. More precisely, we show thatO-similarity1221

is preserved by the operations in JG. ! ; i`;1;1i;ˇv/. This is, however, a direct conse-1222

quence of Lemmas 5.1, 5.2, 6.1 and 8.1. We remark that Proposition 8.3 guarantees that1223

Lemma 8.1 can be applied. Indeed, Proposition 8.3 implies that JG. ! ; i`;1;1i;ˇv/-1224

vectors are constant on equitable partitions. Furthermore, since 1Vi
DO !1Wi

, for all1225

iD1; : : : ;`, and 1DP`
iD1 1Vi

DP`
iD1 1Wi

, we have that 1DO !1. Hence,O is doubly1226

quasi-stochastic and Lemma 6.1 applies.1227

We may thus conclude that all expressions in JG. ! ; i`;1;1i;ˇv/ preserve O-1228

similarity. Hence, e.AG/De.AH / for any sentence e.X/ in JG. ! ; i`;1;1i;ˇv/.1229

For the converse direction, we need to show that G"JG. " ;i`;1;1i;ˇv/H implies1230

that there exists an orthogonal matrix O such that AG !ODO !AH , and where O1231

preserves the coarsest equitable partitions ofG andH . This can be shown, just like in1232

the proof of Theorem 7.2, by means trace conditions. In particular, we impose trace1233

conditions such that O satisfies AG !ODO !AH and .1Vi
!1i

Vi
/ !ODO !.1Wi

!1i
Wi
/,1234

for iD1; : : : ;`. These conditions replace conditions (7.3) and (7.4) in the proof of1235

Theorem 7.2. We show in the appendix that this indeed implies that O preserves the1236

coarsest equitable partitions of G and H . As observed in the proof of Theorem 7.2,1237

the trace conditions ew.X/ use expressions 2[T�`ii .X/ (from the proof of Proposi-1238

tion 7.2 and revised in the proof of Proposition 8.2) which use addition and scalar1239

multiplication. We again observe that addition and linear combination are not needed.1240

Indeed, G"JG. " ;i`;1;1i;ˇv/H implies that ew.AG/Dew.AH / because of the linearity1241

of operations in JG. ! ; i`;1;1i;ˇv/. ut1242

As it turns out, JG. ! ; i`;1;1i;ˇv/-equivalence precisely captures co-spectral and1243

fractional isomorphic graphs.1244

Proposition 8.4 LetG andH be graphs of the same order. Then,G"JG. " ;i`;1;1i;ˇv/H1245

if and only if G and H are co-spectral and have a common equitable partition.1246

Proof IfG"JG. " ;i`;1;1i;ˇv/H , thenG andH must have a common equitable partition1247

by Proposition 8.2. Furthermore, we know Proposition 5.1 and Theorem 5.2, that G1248

andH must also be co-spectral. For the converse, we explicitly construct an orthogonal1249

matrixO such that AG !ODO !AH andO preserves the coarsest equitable partitions1250

of G and H . Then, Theorem 8.1 implies that G"JG. " ;i`;1;1i;ˇv/H holds.1251

We next construct the matrix O . Let G be of order n and denote by 1V1
; : : : ;1V`

1252

the indicator vectors of G’s coarsest equitable partition. It is known that, for such1253

indicator vectors, the subspace UG Dspan.11; : : : ;1`/ of n is an AG-invariant sub-1254

space (see e.g., Lemma 5.2 in [14]). In other words, for any v2UG , AG !v2UG .1255
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Furthermore, since AG is a symmetric matrix, also the orthogonal complement sub-1256

space U?
G is AG-invariant (see e.g., Theorem 36 in [47]). Here, U?

G consists of all1257

vectors v0 in n that are orthogonal to any vector v2UG , i.e., such vi !v0 D0 holds.1258

Let us interpret AG as the linear operator TG Wn!nWv 7!AG !v. This is a diago-1259

nalizable operator (because AG is symmetric) and it is known that the restrictions1260

TG jUG
and TG jU ?

G
are also diagonalizable operators (because of the invariance of1261

these two subspaces (see e.g., Corollary 15.9 in [33])). This implies that there ex-1262

ists eigenvectors v1; : : : ;v`;v
0
1; : : : ;v

0
n$` of AG such that UG Dspan.v1; : : : ;v`/ and1263

U?
G Dspan.v0

1; : : : ;v
0
n$`/. Furthermore, if we denote by PG the matrix with columns1264

1V1
; : : : ;1V`

, thenAG !PG DPG !C with C the `%`-matrix such that Cij D/2;.v;Vj /1265

for v2Vi (see e.g., Lemma 6.1 in [14]). Also Cij is diagonalizable (this follows from1266

the fact that the characteristic polynomial of C divides that of AG (see e.g., Theo-1267

rem 6.2 in [14]) and hence there exists ` linearly independent eigenvectors c1; : : : ; c`1268

of C . It is known that vi DPG !ci , for iD1; : : : ;`, are independent eigenvectors of1269

AG . More precisely, if C !ci D!i %ci then AG !.PG !ci /D!i %.PG !ci /. We may thus1270

assume that UG is spanned by PG !c1; : : : ;PG !c`.1271

The reasoning above also holds forAH , i.e., there are eigenvectorsw1; : : : ;w`;w
0
1;1272

: : : ;w0
n$` of AH such that UH Dspan.w1; : : : ;w`/ and U?

H Dspan.w0
1; : : : ;w

0
n$`/. Im-1273

portant to observe here is that since G and H have a common equitable partition,1274

AH !PH DPH !C , where PH is now the matrix with columns 1W1
; : : : ;1W`

and C1275

is the same `%`-matrix as used above. We may thus assume that UH is spanned by1276

PH !c1; : : : ;PH !c` and furthermore, PG !ci and PH !ci are eigenvectors of AG and1277

AH , respectively, both belonging to the same eigenvalue !i of C .1278

We next use thatG andH are co-spectral. The argument above, combined with co-1279

spectrality, implies that the (multiset) of eigenvalues corresponding to the eigenvectors1280

spanning UG and UH are the same. This implies in turn, by co-spectrality, that we1281

may also assume that AG !v0
i D!i %v0

i and AH !w0
i D!i %w0

i , for iD1; : : : ;n'`, for1282

some eigenvalues !i of AG (and AH ). A final observation is that UG and UH are1283

also spanned by 1Vi
; : : : ;1V`

and 1W1
; : : : ;1W`

, respectively. This implies, that the1284

eigenvectors spanning U?
G and U?

H are necessarily orthogonal to these indicator1285

vectors.1286

We defineO as the matrixOG !Oi
H , whereOG is the orthonormal matrix consisting1287

of vectors 1
n1

1V1
; : : : ; 1

n`
1V`
;v0

1; : : : ;v
0
n$` andOH is the orthonormal matrix consisting1288

of vectors 1
n1

1W1
; : : : ; 1

n`
1W`

;w0
1; : : : ;w

0
n$`, whereni DjVi jDjWi j and were we assume1289

the eigenvectors v0
i and w0

i to be normalized. As a consequence, O is clearly an1290

orthogonal matrix and thus O !Oi DI DOi !O holds. In view of the construction of1291

the eigenvectors, we have the following more simple expression for O:1292

OD
X̀

j D1

% 1
nj

%.1Vj
!1i

Wj
/
&

C
n$X̀

j D1

v0
j !.w0

j /
i:1293

We verify the required conditions. To begin with, we note that O !1Wi
D1Vi

, for1294

iD1; : : : ;`. Indeed, this follows from the fact that 1i
Wj

!1Wi
is zero when i¤j and1295

is jWi jDni when iDj . Moreover, .w0
j /

i !1Wi
D0 because of w0

j 2U?
H , for all j D1296

1; : : : ;n'`. Similarly, 1i
Vi

!OD1i
Wi

, for iD1; : : : ;`. Hence, O indeed preserves the1297

coarsest equitable partitions of G and H . It remains to verify that AG !ODO !AH .1298
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We verify this for both terms in the above expression for O . Since v0
i and w0

i are1299

eigenvectors of AG and AH , respectively, belong to the same eigenvalue !i , we have1300

for the second term:1301

AG !
%n$X̀

j D1

v0
j !.w0

j /
i
&

D
n$X̀

j D1

AG !v0
j !.w0

j /
i D

n$X̀

j D1

!j %.v0
j !.w0

j /
i/1302

D
n$X̀

j D1

v0
j !.w0

j /
i !AH D

%n$X̀

j D1

v0
j !.w0

j /
i
&

!AH :1303

For the first term in the expression for O , we consider the matrices1304

BG DAG !
%X̀

iD1

1

nj

%.1Vi
!1i

Wi
/
&

D
X̀

iD1

X̀

j D1

# 1
ni

%/2;.vi ;Vj /
$
%.1Vj

!1i
Wi
/1305

BH D
%X̀

iD1

1

ni

%.1Vi
!1i

Wi
/
&

!AH D
X̀

iD1

X̀

j D1

# 1
ni

%/2;.wi ;Wj /
$
%.1Vi

!1i
Wj
/;1306

for some (arbitrary) vertices vi 2Vi and wi 2Wi . We here used that the indicator1307

vectors represent equitable partitions. We now look at the entries in the matrices BG1308

and BH . We first observe that J DP`
i;j D1 1Vj

!1i
Wi

. Hence, for each p;q2f1; : : : ;ng1309

we can define f .p/ and f .q/ as the unique indexes of indicator vectors 1Vf .p/
and1310

1Wf .q/
such that they hold value 1 at position p and q, respectively. Then,1311

.BG/p;q D 1

nf .p/

%/2;.vf .p/;Vf .q//D
1

nf .p/

%/2;.wf .p/;Wf .q//D.BH /p;q;1312

because the indicator vectors represent common equitable partitions. Hence, we may1313

indeed conclude that AG !ODO !AH . ut1314

Example 8.2 We already mentioned that the graphs G6 ( ) and H6 ( ) are1315

co-spectral and have a common equitable partition. Proposition 8.4 implies that1316

G6 "JG. " ;i`;1;1i;ˇv/H6, as anticipated. ut1317

We conclude by mentioning that we can extend JG. ! ; i`;1;1i;ˇv/ with C, %,1318

!, and pointwise function applications on scalars, without increasing the distinguish-1319

ing power of the fragments. This can be shown in precisely the same way as for1320

JG. ! ; i`;1;/B�;/. Indeed, we have just seen that G"JG. " ;i`;1;1i;ˇv/H implies that1321

AG !ODO !AH for some orthogonal matrixO which preserves the coarsest equitable1322

partitions of G and H . Then, also AH !O! DO! !AG where O! is again orthogonal1323

and also preserves the coarsest equitable partitions of G and H . It now suffices to1324

observe that all operations in JG. ! ;! ; i`;1;1i;ˇv;C;%;�TTHvbŒf #;f 2$/ preserve1325

O-similarity and O!-similarity. An inspection of the proof of Proposition 7.5 shows1326

that we can replace the compatibility assumption ofO by the preservation of equitable1327

partition condition when using ˇv instead of /B�;. !/. Hence, also pointwise function1328

applications on vector preserveO andO!-similarity and do not add expressive power1329

when included in JG. ! ; i`;1;1i;ˇv/.1330

As a consequence, JG. ! ; i`;1;1i;ˇv/-equivalence and JG. ! ;!; i`;1;ˇv/-equiva-1331

lence coincide (we note that we here replace 1i. !/with !). Hence, JG. ! ; i`;1;1i;ˇv/-1332

equivalence implies JG. ! ;!;1;ˇv/-equivalence, since the latter is a smaller fragment1333
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than JG. ! ;!; i`;1;ˇv/. Proposition 8.1 then implies that JG. ! ; i`;1;1i;ˇv/ also1334

implies JG. ! ;!;1;/B�;/-equivalence. The reverse implication does not hold. Indeed,1335

we have already seen thatG3 ( ) andH3 ( ) are two fractionally isomorphic graphs1336

that are not co-spectral. So, these graphs can be distinguished by JG. ! ; i`;1;1i;ˇv/1337

but not by JG. ! ;!;1;/B�;/.1338

9 The impact of pointwise functions on matrices1339

The final operation that we consider is pointwise function applications on matrices.1340

In particular, we start by considering the Schur-Hadamard product, which we de-1341

note by the binary operator ˇ, i.e., .AˇB/ij DAijBij for matrices A and B . We1342

show that once two graphs are equivalent with regards to sentences in JG. ! ;!; i`;1;1343

/B�;;ˇ/, then they will be equivalent with regards to sentences in JG. ! ;!; i`;1;1344

/B�;;�TTHvŒf #;f 2$/ for any pointwise function application �TTHvŒf #, be it on1345

scalars, vector or matrices. The latter fragment corresponds to J�hG�L:, as in-1346

troduced by Brĳder et al. [10] and described in Section 3. From the work by Brĳder1347

et al. [10] it implicitly follows that *3-equivalence implies J�hG�L:-equivalence.1348

The main result established in this section is that converse implication also holds. That1349

is, J�hG�L:-equivalence coincides with *3-equivalence. We first illustrate the ad-1350

ditional power that the Schur-Hadamard product provides by means of an example.1351

Example 9.1 We recall that in expression Oj/2;`.X/ in Example 7.1, products of1352

diagonal matrices resulted in the ability to zoom in on vertices that carry specific1353

degree information. When diagonal matrices are concerned, the product of matrices1354

coincides with pointwise multiplication of the vectors on the diagonals. Allowing1355

pointwise multiplication on matrices has the same effect, but now on edges in graphs.1356

As an example, suppose that we want to count the number of “triangle paths” in G,1357

i.e., paths .v0; : : : ;vk/ of length k in G such that each edge .vi$1;vi / on the path is1358

part of a triangle. This can be done by expression1359

O%T�i?bk.X/ WD1.X/! !..�TTHvŒf>0#.X
2ˇX//k !1.X/;1360

where f>0.x/D1 if x¤0 and f>0.x/D0 otherwise4. Indeed, when evaluated on1361

adjacency matrix AG , A2
G ˇAG extracts from A2

G only those entries corresponding to1362

paths .u;v;w/ of length 2 such that .u;w/ is an edge as well, i.e., it identifies edges1363

involved in triangles in G. Then, �TTHvŒf>0#.A
2
G ˇAG/ sets all non-zero entries to 1.1364

By considering the kth power of this matrix and summing up all its entries, the number1365

of triangle paths of length k is obtained. It can be verified that for graphs G5 ( )1366

andH5 ( ), O%T�i?b2.AG5
/D Œ160#¤ Œ132#DO%T�i?b2.AH5

/ and hence, they1367

can be distinguished when the Schur-Hadamard product is available. Recall that all1368

previous fragments could not distinguish between these two graphs. ut1369

In fact, we will use the Schur-Hadamard product to compute stable edge partitions1370

of graphs, obtained as the result of the edge colouring algorithm by Weisfeiler-1371

4 The use of �TTHvŒf>0". "/ is just for convenience. Its application inside sentences can be simulated
with operators in JG. " ;!; i`;1;/B�;;ˇ/ when evaluated on given adjacency matrices.
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Algorithm 2: Computing the stable edge colouring based on algorithm 2-Stab [7].
Input : A graph G D.V;E/ of order n.
Output : Stable edge colouring & WV #V !C .

1 Let & WD&0;
2 Let C WDf0;1;2g;
3 repeat
4 for .v1;v2/2V #V do
5 Compute G2.v1;v2/ relative to &;
6 Replace C by a minimal set of new colours C 0 and define &0 WV #V !C 0 such that
7 for pairs .v1;v2/, .v0

1;v0
2/ in V #V do

8 &0.v1;v2/D&0.v0
1;v0

2/,G2.v1;v2/DG2.v0
1;v0

2/

9 Let C WDC 0;
10 Let & WD&0;
11 until jC j does not change;

Lehman [7,13,57,69]. Such partitions can be seen as a generalization of equitable1372

partitions, but now partitioning all pairs of vertices, rather than vertices. Then, similar1373

to the proof of Proposition 7.2, we show that when two graphs are indistinguishable by1374

sentences in JG. ! ;!; i`;1;/B�;;ˇ/, then they are indistinguishable by edge colouring.1375

It is known from the seminal paper by Cai, Fürer and Immerman [13], that this is1376

equivalent to *3-equivalence. We next detail these notions.1377

9.1 Stable edge partitions1378

The stable edge partition of a graph GD.V;E/ arises as the result of applying the1379

edge colouring algorithm by Weisfeiler-Lehman [7,13,57,69], also known as the1380

2-dimensional Weisfeiler-Lehman algorithm, on G. In Algorithm 2 we provide the1381

pseudo-code of the algorithm 2-Stab, taken from Bastert [7], which implements edge1382

colouring. In a nutshell, the algorithm starts by assigning every vertex pair a colour,1383

and then revises colourings iteratively based on some structural information. When1384

no revision of the colouring occurs, the colouring has stabilized, the algorithm stops1385

and returns the stable colouring. Colourings naturally induce partitions of V %V , by1386

simply grouping together vertex pairs with the same colour. The stable edge partition1387

ofG is the partition induced by the stable colouring returned by 2-Stab. The algorithm1388

2-Stab needs at most n2 iterations when evaluated on a graph of order n.1389

More precisely, an (edge) colouring & assigns a colour to each vertex pair in1390

V %V , i.e., if we denote by C a set of colours, it is a function & WV %V !C . The1391

partition of V %V induced by & is denoted by …&.G/ and will be represented by1392

indicator matrices, one for each colour c2C . More precisely, for a colour c2C , we1393

denote by Ec the n%n-matrix such that for v1;v2 2V , .Ec/v1;v2
D1 if &.v1;v2/Dc1394

and .Ec/v1;v2
D0, otherwise. Hence, …&.G/ is represented by the indicator matrices1395

Ec , for c2C .1396

Algorithm 2-Stab starts (on lines 1 and 2) with an initial colouring &0 WV %V !1397

f0;1;2g encoding adjacency, non-adjacency and loop information. More precisely,1398

for vertices v;w2V , &0.v;v/D2, &0.v;w/D1 if .v;w/2E, and &0.v;w/D0 for1399
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v¤w and .v;w/ 62E. Then, 2-Stab adjusts the current colouring in each iteration, as1400

follows.1401

Suppose that the current colouring is & WV %V !C . Given this colouring, for each1402

pair of vertices v1;v2 2V , the so-called structure list G2.v1;v2/ is computed (lines 41403

and 5). To define these lists, the structure constants are needed, which are defined as1404

pc;d
v1;v2

WDjfv3 2V j&.v1;v3/Dc;&.v3;v2/Ddgj;1405

for colours c and d in C and vertices v1 and v2 in V . These numbers count the1406

number of triangles5, based on .v1;v2/ whose other two pairs .v1;v3/ and .v3;v2/1407

have prescribed colours c and d , respectively. Then, in a structure list we simply1408

gather all these constants for a specific vertex pair. That is,1409

G2.v1;v2/ WDf.c;d;pc;d
v1;v2

/ jpc;d
v1;v2

¤0g:1410

Based on this information, 2-Stab will assign new colours to pairs of vertices (lines 6–1411

8). More precisely, C is replaced by a minimal set of colours C 0 such that each unique1412

G2.v1;v2/ corresponds precisely to a single colour c0 in C 0. Hence, the new colouring1413

&0 WV %V !C 0 will assign .v0
1;v

0
2/ the colour c0, corresponding to G2.v1;v2/, when1414

G2.v1;v2/DG2.v0
1;v

0
2/. It is easily verified that the partition …&0.G/ is a refinement1415

of …&.G/, which in turn is a refinement of …&0
.G/.1416

Algorithm 2-Stab now replaces & by &0 and C by C 0 (lines 9 and 10), and repeats1417

this process until the number of colours remains fixed (line 11). In other words, the1418

corresponding partition is not further refined. The algorithm returns the final (stable)1419

colouring.1420

The stable edge partition of G, denoted by ….G/, is now the partition induced1421

by this stable colouring. It is known that ….G/ is the unique coarsest partition of1422

V %V which refines…&0
.G/ and corresponding to a colouring satisfying the stability1423

condition stated on lines 7 and 8 in Algorithm 2.1424

Two graphs GD.V;E/ and HD.W;F / of the same order are now said to be1425

indistinguishable by edge colouring, denoted byG"qGH , if the stable edge partitions1426

….G/ and….H/ ofG andH , respectively, are (i) of the form….G/DfEc1
; : : : ;Ec`

g1427

and ….H/DfFc1
; : : : ;Fc`

g, that is, the parts in the partitions correspond to the same1428

colour; and (ii) the corresponding parts in these partitions have the same size, that is,1429

Eci
and Fci

have the same number of entries carrying the value 1.1430

In the seminal paper by Cai, Fürer and Immerman [13], the connection with logical1431

indistinguishability was made.1432

Theorem 9.1 Let G and H be two graphs of the same order. Then, G"qGH if and1433

only if G"*3 H . ut1434

In this section, we complement this correspondence by relating *3-equivalence1435

to J�hG�L:-equivalence. More precisely, we show that G"*3 H if and only if1436

G"J�hG�L:H . In fact, equivalence with regards to sentences in JG. ! ;!; i`;1;1437

/B�;;ˇ/ already suffices. We first show that JG. ! ;!; i`;1;/B�;;ˇ/-equivalence im-1438

plies indistinguishability by edge colouring.1439

5 With a triangle one simply means a triple .v1;v2/, .v1;v3/ and .v2;v3/ of vertex pairs, none of which
has to be an edge in G.
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Proposition 9.1 LetG andH be graphs of the same order. Then,G"JG. " ;!;i`;1;/B�;;ˇ/1440

H implies that G"qGH .1441

Proof We first show that JG. ! ;!; i`;1;/B�;;C;%;ˇ/, where we added addition and1442

scalar multiplication to JG. ! ;!; i`;1;/B�;;ˇ/, has sufficient power to compute the1443

stable edge partition ….G/ of a given graph G. We then construct sentences in1444

JG. ! ;!; i`;1;/B�;;C;%;ˇ/ such that when G and H agree on these sentences, then1445

G and H must be indistinguishable by edge colouring. Finally, we show that we can1446

eliminate addition and scalar multiplication.1447

The overall proof is similar to the proof of Proposition 7.2, but using indicator1448

matrices (representing the edge partitions) instead of indicator vectors (which repre-1449

sented the vertex partitions), and by relying on the algorithm 2-Stab to compute the1450

stable edge partition of a graph.1451

Given G, let ….G/DfEc1
; : : : ;Ec`

g be its stable edge partition. We show that1452

we can construct expressions bi�#+QHci
.X/ in JG. ! ;!; i`;1;/B�;;C;%;ˇ/, such that1453

Eci
Dbi�#+QHci

.AG/, for iD1; : : : ;`.1454

The initialization step of 2-Stab is easy to simulate in JG. ! ;!; i`;1;/B�;;C;%;ˇ/.1455

Indeed, we simply consider expressions bi�#+QH.0/
2 .X/ WD/B�;.1.X//; bi�#+QH.0/

1 .X/ WD1456

X ; and bi�#+QH.0/
0 .X/ WD1.X/ !.1.X//!'X'/B�;.1.X//. Then, the indicator matri-1457

ces bi�#+QH.0/
0 .AG/, bi�#+QH.0/

1 .AG/, and bi�#+QH.0/
2 .AG/ represent the initial partition1458

…&0
.G/DfE0;E1;E2g corresponding to the initial colouring &0.1459

Suppose now that after iteration i , the current set of colours is C and the colour-1460

ing is & WV %V !C . Assume, by induction, that we have expressions bi�#+QH.i/
c .X/ in1461

JG. ! ;!; i`;1;/B�;;C;%;ˇ/, one for each c2C , such that bi�#+QH.i/
c .AG/ is an indica-1462

tor matrix representing the part in the edge partition…&.G/, induced by &, for colour1463

c. Given these, we next construct expressions for the refined partition computed by1464

2-Stab in the next iteration.1465

First, for each pair of colours .c;d/ in C , we consider the expression1466

P .iC1/
c;d .X/ WDbi�#+QH.i/

c .X/ !bi�#+QH.i/
d .X/:1467

On inputAG , it is readily verified thatP .i/
c;d .AG/ is a matrix whose entry corresponding1468

to vertices v1 and v2 holds the value pc;d
v1;v2

. Let P .iC1/
c;d be the set of numbers occurring1469

in P .iC1/
c;d .AG/. For each value p in P .iC1/

c;d , we now extract an indicator matrix1470

indicating the positions in P .iC1/
c;d .AG/ that hold value p.1471

This can be done using an expression BM/.iC1/
c;d;p .X/which works in a similar way as1472

Oj/2;.X/ in Example 7.1, but uses the Schur-Hadamard product instead of products1473

of diagonal matrices. The following example illustrates the underlying idea (see also1474

the Schur-Wielandt Principle [58] mentioned before).1475

Example 9.2 ConsiderPc;d D

0

@
2 0 3
1 3 2
0 2 3

1

Awith Pc;d Df0;1;2;3g. Suppose that we want1476

to find all entries holding value 3. This can be computed, as follows:1477 0

@
0 0 1
0 1 0
0 0 1

1

AD 1

6
%

0

@

0

@
2 0 3
1 3 2
0 2 3

1

Aˇ

0

@

0

@
2 0 3
1 3 2
0 2 3

1

A'

0

@
1 1 1
1 1 1
1 1 1

1

A

1

Aˇ

0

@

0

@
2 0 3
1 3 2
0 2 3

1

A'

0

@
2 2 2
2 2 2
2 2 2

1

A

1

A

1

A ;1478
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where 1
6

D 1
3.3$1/.3$2/

, just as in Example 7.1. ut1479

More generally, to identify positions that hold a specific value in P .iC1/
c;d .AG/, we1480

consider the expression BM/.iC1/
c;d;p .X/ defined by1481

 
1Q

p02P.iC1/
c;d ;p¤p0.p'p0/

!
%

K

p02P.iC1/
c;d ;p¤p0

#
P .iC1/

c;d .X/'p0%.1.X/ !.1.X//!/
$
:1482

It should be clear from Example 9.2 that BM/.iC1/
c;d;p .AG/ indeed results in the desired1483

indicator matrix. We note that the expression BM/.iC1/
c;d;p .X/ depends on the values in1484

P .iC1/
c;d and hence also depends on AG .1485

LetC 0 be the new set of colours assigned by 2-Stab.G/ during the current iteration.1486

As mentioned earlier, each colour c in C 0 is in correspondence with G2.v1;v2/ for1487

some vertices v1 and v2. Let us pick a colour c in C 0 and assume that it corresponds1488

to G2.v1;v2/Df.c1;d2;p
c1;d1
v1;v2

/; : : : ; .cs;ds;p
cs ;ds
v1;v2

/g. We next use BM/.iC1/
c;d;p .X/ and the1489

Schur-Hadamard product to identify all vertex pairs that are assigned colour c, as1490

follows:1491

bi�#+QH.iC1/
c .X/ WD BM/.iC1/

c1;d2;p
c1;d1
v1;v2

.X/ˇ! ! !ˇBM/.iC1/

cs ;ds ;pcs ;ds
v1;v2

.X/:1492

In other words, we use the Schur-Hadamard product to simulate the “conjunction”1493

of the binary matrices representing the vertex pairs .v1;v2/ having non-zero pci ;di
v1;v2

,1494

for iD1; : : : ; s. It is now easily verified that, on input AG , bi�#+QH.iC1/
c .AG/ returns1495

an indicator matrix in which the entries holding a 1 correspond precisely to the1496

pairs .v0
1;v

0
2/2V %V such that G2.v0

1;v
0
2/DG2.v1;v2/ where G2.v1;v2/ corresponds1497

to colour c. In other words, bi�#+QH.iC1/
c .AG/ represents the refined edge partition1498

corresponding to the part associated with colour c. We do this for every colour1499

in C 0. Clearly, bi�#+QH.iC1/
c .AG/, for c2C 0, represent the refined partition …&0.G/1500

corresponding to &0 WV %V !C 0.1501

We continue in this way until the colouring stabilises. i.e., no further colours1502

are needed. We denote the final set of colours by C and by bi�#+QHc.X/, for c21503

C , the JG. ! ;!; i`;1;/B�;;C;%;ˇ/ expression computing the parts Ec in ….G/.1504

The correctness of these expressions follows from the previous arguments and the1505

correctness of the algorithm 2-Stab.1506

Just as in the proof of Proposition 7.2, the expressions bi�#+QHc.X/ depend on1507

AG since we explicitly used the values occurring in P .i/
c;d .AG/ and the colours as-1508

signed to vertex pairs during each iteration i of 2-Stab on G. Let ….H/ be stable1509

edge partition of H . We next show that G"JG. " ;!;i`;1;C;#;ˇ/H implies that ….H/1510

consists of bi�#+QHc.AH /, for c2C . Furthermore, we show that the number of ones1511

in bi�#+QHc.AG/ and bi�#+QHc.AH / agree for all c2C . Hence, G and H are indistin-1512

guishable by edge colouring.1513

The proof is by induction on the number of iterations of 2-Stab.G/ and 2-Stab.H/.1514

We denote by &.i/
G WV %V !C .i/

G and &.i/
H WW %W !C .i/

H the colouring used in the1515

i th iteration of 2-Stab.G/ and 2-Stab.H/, respectively. The induction hypothesis1516

is that G"JG. " ;!;i`;1;C;#;ˇ/H implies that C .i/
G DC .i/

H DC .i/ and furthermore that for1517

each c2C .i/, bi�#+QH.i/
c .AH / is an indicator matrix, and all bi�#+QH.i/

c .AH / together1518
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constitute the edge partition …&.i/
H
.H/. Moreover, we show that for each c2C .i/,1519

bi�#+QH.i/
c .AG/ and bi�#+QH.i/

c .AH / have the same number of ones. This clearly suf-1520

fices, for if this holds, bi�#+QHc.AH /, for c2C , constitute ….G/ and bi�#+QHc.AG/1521

and bi�#+QHc.AH / have the same number of ones, for all c2C .1522

We start by verifying the hypothesis for the base case, i.e., when iD0. Clearly,1523

&.0/
G and &.0/

H use the same colours C .0/
G DC .0/

H DC .0/ Df0;1;2g. By definition of the1524

expressions bi�#+QH.0/
c .X/, all bi�#+QH.0/

c .AH / together represent…&.0/
H
.H/. Moreover,1525

by considering the sentences1526

OQM2b.0/
c .X/ WD.1.X//! !bi�#+QH.0/

c .X/ !1.X/;1527

for c2C ,G"JG. " ;!;i`;1;C;#;ˇ/H implies that OQM2b.0/
c .AG/DOQM2b.0/

c .AH /. Hence,1528

bi�#+QH.0/
c .AG/ and bi�#+QH.0/

c .AH / have the same number of ones, as desired.1529

Suppose, by induction, thatG"JG. " ;!;i`;1;C;#;ˇ/H implies that &.i/
G WV %V !C .i/

G1530

and &.i/
H WW %W !C .i/

H with C .i/
G DC .i/

H DC .i/. Furthermore, the current edge parti-1531

tion …&.i/
H
.H/ of H is represented by bi�#+QH.i/

c .AH /, for c2C .i/. Furthermore, for1532

each c2C .i/, the number of ones in bi�#+QH.i/
c .AH / and bi�#+QH.i/

c .AG/ agree.1533

As before, let P .iC1/
c;d be the set of values occurring in P .iC1/

c;d .AG/ and consider1534

the expressions BM/.iC1/
c;d;p .X/ for c;d 2C .i/ and p2P .iC1/

c;d . We show that BM/.iC1/
c;d;p .AH /1535

is a binary matrix as well containing the same number of ones as BM/.iC1/
c;d;p .AG/. This1536

implies that each value p2P .iC1/
c;d occurs in P .iC1/

c;d .AH / and moreover, it occurs1537

the same number of times as in P .iC1/
c;d .AG/. Hence, the set of values occurring in1538

P .iC1/
c;d .AH / is the same as those occurring in P .iC1/

c;d .AG/.1539

To check that BM/.iC1/
c;d;p .AH / is a binary matrix, we use the sentence1540

#BM�`v.X/ WD.1.X//! !
#
.XˇX'X/ˇ.XˇX'X/

$
!1.X/:1541

This sentence will return Œ0#, when given a real matrix as input, if and only if the1542

input matrix is a binary matrix. Indeed, for a binary matrix B , BˇBDB and hence1543

BˇB'BDZ, whereZ is the zero matrix. SinceZˇZDZ, #BM�`v.B/D1i !Z !1D1544

Œ0#. For the converse, assume that #BM�`v.B/D Œ0#. We observe that each entry in1545

.BˇB'B/ˇ.BˇB'B/ is non-negative value. Indeed, all entries are squares of1546

real numbers. Hence, when #BM�`v.B/D Œ0#, the sum of all these squared entries must1547

be zero. This implies thatBˇB'BDZ. This in turn implies thatB can only contain1548

0 or 1 as entries, since these are the only real values satisfying x2'xD0. Hence,1549

when G"JG. " ;!;i`;1;C;#;ˇ/H holds, then since all BM/.iC1/
c;d;p .AG/, for c;d 2C .i/ and1550

p2P .iC1/
c;d , are binary matrices,1551

#BM�`v.BM/.iC1/
c;d;p .AG//D Œ0#D#BM�`v.BM/.iC1/

c;d;p .AH //:1552

So indeed, BM/.iC1/
c;d;p .AH / is a binary matrix as well.1553

The new colours in 2-Stab.G/ are assigned based on the structure lists G2.v1;v2/.1554

We show that for every unique structure list G2.v1;v2/ there is a pair of vertices1555

w1;w2 in W such that G2.v1;v2/DG2.w1;w2/. This implies that 2-Stab.H/ will1556

use the same colours for refining &.i/
H as 2-Stab.G/ uses to refine &.i/

G . Hence, the1557
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revised colourings &.iC1/
G WV %V !C .iC1/

G and &.iC1/
H WW %W !C .iC1/

H satisfy indeed1558

that C .iC1/
G DC .iC1/

H DC .iC1/.1559

Consider a structure list G2.v1;v2/ and assume that it corresponds to a new1560

colour c2C .iC1/
G . We know that bi�#+QH.iC1/

c .AG/ returns the indicator matrix in-1561

dicating which vertex pairs in V %V have this structure list (colour c). The expression1562

bi�#+QH.iC1/
c .X/ consists of the Schur-Hadamard product of BM/.iC1/

c;d;p .X/ for every1563

.c;d;p/ in G2.v1;v2/. We have shown above that BM/.iC1/
c;d;p .AG/ and BM/.iC1/

c;d;p .AH / con-1564

tain the same number of ones, meaning that there are vertex pairs .w1;w2/2W %W1565

for which pc;d
w1;w2

DpDpc;d
v1;v2

. Furthermore, in a similar way as above, we can show1566

that G"JG. " ;!;i`;1;C;#;ˇ/H implies that bi�#+QH.iC1/
c .AH / is a binary matrix which1567

consists of the same number of ones as bi�#+QH.iC1/
c .AG/. So, 2-Stab.H/ needs the1568

same set of colours C .iC1/
G as 2-Stab.H/ in the refinement phase. Hence, we can take1569

C .iC1/
G DC .iC1/

H DC .iC1/. By construction, bi�#+QH.iC1
c /.AH / and bi�#+QH.iC1

c0 /.AH /1570

do not have a common entry holding value 1, for each distinct pair of colours c;c0 21571

C .iC1/. We note that the number of entries holding value 1 in all bi�#+QH.iC1
c /.AH /1572

combined sum up n2. Indeed, this holds for bi�#+QH.iC1
c /.AG/ and we have just shown1573

that bi�#+QH.iC1/
c .AH / consists of the same number of ones as bi�#+QH.iC1/

c .AG/. Hence,1574

bi�#+QH.iC1
c /.AH / also represent a partition ofW %W , i.e.,…&.iC1/

H
.H/, satisfying our1575

induction hypothesis.1576

To conclude the proof we observe that all operations used in the sentences in1577

JG. ! ;!; i`;1;C;%;ˇ/ in the inductive argument are linear operations. We can there-1578

fore write all sentences as linear combinations of sentences in JG. ! ;!; i`;1;/B�;;ˇ/.1579

Hence, whenG"JG. " ;!;i`;1;/B�;;ˇ/H holds, thenG andH will agree on all linear com-1580

bination of sentences in JG. ! ;!; i`;1;/B�;;ˇ/. In other words,G"JG. " ;!;i`;1;/B�;;ˇ/H1581

implies that G and H are indistinguishable by edge colouring. ut1582

We are now ready to show our main result.1583

Theorem 9.2 LetG andH be two graphs of the same order, thenG"JG. " ;!;i`;1;/B�;;ˇ/1584

H if and only if G"J�hG�L:H if and only if G"*3 H .1585

Proof We show that G"JG. " ;!;i`;1;/B�;;ˇ/H implies G"*3 H , and that G"*3 H1586

implies G"J�hG�L:H . Since JG. ! ;!; i`;1;/B�;;ˇ/ is a smaller fragment than1587

J�hG�L:, G"J�hG�L:H clearly implies G"JG. " ;!;i`;1;/B�;;ˇ/H .1588

We assume first thatG"JG. " ;!;i`;1;/B�;;ˇ/H holds. Then, the previous proposition1589

implies thatG"qGH . Combined with Theorem 9.1, this implies thatG"*3 H . Next,1590

we assume that G"*3 H holds. We show that this implies that G"J�hG�L:H . In1591

Proposition 4.2 in Brĳder et al. [10] it was shown that for every sentence e.X/ in1592

J�hG�L: there exists an equivalent formula 'e.z/ in the relational calculus with1593

aggregates which uses only three “base variables”. We will not recall the syntax of this1594

calculus formally (see [51] for a full definition) but only recall that in this calculus,1595

we have base variables and numerical variables. Base variables can be bound to base1596

columns of relations, and compared for equality. Numerical variables can be bound to1597

numerical columns, and can be equated to function applications and aggregates. The1598

free variable z in 'e.z/ is a numeric variable since a scalar is returned by e.X/.1599
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We now make the connection between matrices, on which J�hG�L: expressions1600

are evaluated, and such typed relations, on which calculus expressions are evaluated.1601

More specifically, a matrix A is encoded as a ternary relation Rel.A/ where two1602

base columns are reserved for the indices of the matrix and the numerical column1603

holds the value in each entry (vectors and scalars are represented analogously). It is1604

now understood that the equivalence of e.X/ and 'e.z/ means that e.AG/ and the1605

evaluation of'e.z/ on Rel.AG/ results in the same scalar. Let cDe.AG/2 and consider1606

the calculus sentence  e WD9z 'e.z/^zDc. Following the arguments in the proof of1607

Proposition 4.4. in [10], which in turn rely on standard translation techniques (see1608

e.g., [41,51]), one can show that e can be equivalently expressed by a sentence 0
e in1609

C 3
1! [56], i.e., in infinitary counting logic with three distinct (untyped) variables over1610

binary relations. These binary relations encode graphs in a standard way by simply1611

storing the edge relation. It is known that G"C 31!
H if and only if G"*3 H [40].1612

By assumption G"*3 H and hence G"C 31!
H . This implies that  0

e.G/D 0
e.H/1613

since  0
e is a sentence in C 3

1! . Hence, also  e evaluates to true on both _2H.AG/1614

and _2H.AH /, and 'e.z/ returns the value c on both _2H.AG/ and _2H.AH /. As a1615

consequence, also e.AH /Dc and e.AG/De.AH /. Since this argument works for any1616

J�hG�L: sentence e.X/, we have that G"J�hG�L:H . ut1617

We conclude by providing an algebraic characterisation of J�hG�L:-equivalence1618

based on an result by Dawar et al [23]. To state this result, we need the notion of co-1619

herent algebra (see e.g., [28]). The coherent algebra C.AG/ associated with AG is the1620

smallest complex matrix algebra containing AG , I , and J and which is closed under1621

the Schur-Hadamard product. Similarly for AH . The algebras C.AG/ and C.AH / are1622

said to be algebraically isomorphic if there is bĳection { WC.AG/!C.AH / which1623

is an algebra morphism which in addition satisfies: {.J /DJ , {.A!/D.{.A//! and1624

{.AˇB/D {.A/ˇ{.B/, for all matrices A;B 2C.AG/.1625

Proposition 9.2 (Proposition 7 in Dawar et al. [23]) Let G andH be two graphs of1626

the same order. Then, G"*3 H if and only if there exists an algebraic isomorphism1627

{ WC.AG/!C.AH / such that {.AG/D {.AH /. ut1628

This correspondence can be made a bit more precise and in line with our previous1629

characterizations.1630

Proposition 9.3 LetG andH be two graphs of the same order, thenG"J�hG�L:H1631

if and only if there exists an orthogonal matrixO such that Ec !ODO !Fc , for c2C ,1632

where Ec and Fc , for c2C , constitute the stable edge partitions ….G/ and ….H/,1633

of G and H , respectively. (Here, C denotes the set of colours used by the colourings1634

that induce the partitions).1635

Proof We know from Proposition 9.1 that G"J�hG�L:H implies that G"qG1636

H . Moreover, we can compute ….G/ and ….H/ by means of the expressions1637

bi�#+QHc.X/ in J�hG�L:. Let C Dfc1; : : : ; c`g be the set of colours used in these1638

partitions. Just as in the proof of Theorem 7.2, we consider sentences ew.X/ WD1639

i`
#
w.bi�#+QHc1

.X/; : : : ;bi�#+QHc`
.X//

$
for some word w over ` variables. Then,1640

G"J�hG�L:H implies that ew.AG/Dew.AH / for any such word w, and thus by1641
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the real version of Specht’s Theorem, there exists an orthogonal matrix O such that1642

bi�#+QHc.AG/ !ODO !bi�#+QHc.AH / for all c2C , as desired. In the application of1643

Specht’s Theorem it is crucial that ….G/ and ….H/ are closed under transposition.1644

This known to hold (see e.g., [7]).1645

For the converse, suppose that there exists an orthogonal matrix O such that1646

Ec !ODO !Fc , for c2C . We note that this implies that AG !ODO !AH since AG D1647 P
c2DEc and AH DP

c2DFc for some subset of colours D of C . This follows the1648

fact that the edge colouring algorithm refines the initial colouring, in which edges in1649

are coloured differently than non-edges. So, a color used for an edge inG can only be1650

used for an edge inH , and vice versa. Moreover, it is known that the binary matrices1651

in ….G/ and ….H/ form a basis for C.AG/ and C.AH /, respectively. This basis is1652

closed under the Shur-Hadamard product, among other things. If we now consider1653

{ WC.AG/!C.AH / WA 7!O !A !Oi, then this is known to be an algebraic isomorphism1654

between C.AG/ and C.AH / [28]. Hence, by Proposition 9.2, G"*3 H and thus also1655

G"J�hG�L:H by Theorem 9.2. ut1656

Remark 9.1 The orthogonal matrix O in the statement of Proposition 9.3 can be1657

taken to be compatible with the common equitable partitions of G and H , just as1658

in Theorem 7.2. This follows from the fact that there is a subset K of colours such1659

that I DP
c2KEc DP

c2K Fc [7]. Furthermore, the diagonal matrices Ec , for c2K,1660

correspond to /B�;.1Vc
/ for the coarsest equitable partition VDfVc jc2Kg of G.1661

Similarly, for c2K, Fc D/B�;.1Wc
/, for the coarsest equitable partition WDfWc j1662

c2Kg of H [7].1663

Remark 9.2 The proof of Proposition 9.3 relied on results by Brĳder et al [10] and1664

Dawar et al [23] in which connections with *3-equivalence were made. We can1665

circumvent this by showing that O-similarity, for an orthogonal matrix O such1666

that Ec !ODO !Fc holds for each colour c2C , is preserved by all operations in1667

J�hG�L:, including arbitrary pointwise functions on matrices. We do not detail1668

this further in this paper, in order to keep the paper of reasonably length (the proof con-1669

sists of many case analyses in which all previous similarity preserving conditions need1670

to be verified in the context of stable edge partitions). The crucial ingredient in all this1671

is that one can verify that for any expression e.X/ in J�hG�L:, such that e.AG/ re-1672

turns a matrix, we can write e.AG/D
P

c2C ac %Ec and e.AH /D
P

c2C ac %Fc . This1673

is generalization JG.L/-vectors being constant on equitable partitions, but now for1674

JG.L/-matrices being constant on stable edge partitions. The ability to rewrite e.AG/1675

(and e.AH /) in terms of the indicator matrices allows to show, e.g., that O-similarity1676

is preserved by the Schur-Hadamard product and, more generally, by any pointwise1677

function application on matrices.1678

10 Concluding remarks1679

We have characterised JG.L/-equivalence for undirected graphs and clearly iden-1680

tified what additional distinguishing power each of the operations has. That natural1681

characterisations can be obtained once more attests that J�hG�L: is an adequate1682

matrix language. We conclude with some avenues for further investigation.1683
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Although some of the results generalise to directed graphs (with asymmetric1684

adjacency matrices), an extension to the case when queries can have multiple inputs1685

seems do-able but challenging. The generalisation beyond graphs, i.e., for arbitrary1686

matrices, is wide open.1687

Of interest may also be to connect JG.L/-equivalence to fragments of first-order1688

logic (without counting). A possible line of attack could be to work over the boolean1689

semiring instead of over the complex numbers (see Grohe and Otto [36] for a similar1690

approach). More general semirings could open the way for modelling and querying1691

labeled graphs using matrix query languages.1692

We also note that J�hG�L: was extended in Brĳder et al. [10] with an op-1693

erator BMp that computes the inverse of a matrix, if it exists, and returns the zero1694

matrix otherwise. The extension, J�hG�L:CBMp, was shown to be more expressive1695

than J�hG�L:. For example, connectedness of graphs can be checked by a single1696

sentence in J�hG�L:CBMp. Of course, we here consider equivalence of graphs.1697

Even when considering a “classical” logic like 6P3, the three-variable fragment of1698

first-order logic, G"6P3 H implies that G is connected if and only if H is con-1699

nected. Translated to our setting, for any fragment JG.L/ in which G"JG.L/H1700

implies that the Laplacian /B�;.AG !1/'AG of G is co-spectral with the Laplacian1701

of /B�;.AH !1/'AH of H , G"JG.L/H implies that G is connected if and only if1702

H is connected. It even implies that G and H must have the same number of con-1703

nected components, as this is determined by the multiplicity of the eigenvalue 0 of1704

the Laplacian [12].1705

Nevertheless, we can also consider equivalence of graphs relative to J�hG�L:C1706

BMp. We observe, however, that the inverse of a matrix can be computed using C and1707

%, by the Cayley-Hamilton Theorem [5], given the coefficients of the characteristic1708

polynomial of the adjacency matrix. These coefficients can be computed using C, %1709

and i`. For fragments supporting ! , C, % and i`, the operator BMp thus does not add1710

distinguishing power. It is unclear what the impact is of BMp for smaller fragments such1711

as JG. ! ; ;1/ and JG. ! ;!;1;/B�;/.1712

To relate our notion of equivalence more closely to the expressiveness questions1713

studied in Brĳder et al. [10], it may be interesting to investigate notions of local-1714

ity of JG.L/ expressions, as this underlies the inexpressibility of connectivity of1715

J�hG�L: [52]. It would be nice if this can be achieved in purely algebraic terms,1716

without relying on locality notions in logic.1717

Finally, J�hG�L: was also extended with an 2B;2M operator which returns a1718

matrix whose columns consist of eigenvectors spanning the eigenspaces [10]. Since1719

the choice of eigenvectors is not unique, this results in a non-deterministic semantics.1720

We leave it for future work to study the equivalence of graphs relative to deterministic1721

fragments supporting the 2B;2M operator, i.e., such that the result of expressions does1722

not depend on the eigenvectors returned. As a starting point one could, for example,1723

force determinism by considering a certain answer semantics. That is, if e.X/ is an1724

expression using 2B;2M.X/, one can define +2`i.e.AG// WD
T

V e.AG ;V /, where V1725

ranges over all bases of the eigenspaces. Distinguishability with regards to such a1726

certain answer semantics demands further investigation.1727
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Proof of Lemma 5.11908

Lemma 5.1 Let AG and AH be two adjacency matrices of the same dimensions which are T -similar1909

for an arbitrary matrix T . Let e1.X/ and e2.X/ be two expressions in JG.L/ for any L. If ei .AG/ and1910

ei .AH / are T -similar, for i D1;2, then e1.AG/ "e2.AG/ is also T -similar to e1.AH / "e2.AH / (provided,1911

of course, that the multiplication is well-defined).1912

Proof To show this lemma, we distinguish between the following cases, depending on the dimensions of1913

e1.AG/ and e2.AG/ (or equivalently, the dimensions of e1.AH / and e2.AH /). Let e.X/ WDe1.X/ "e2.X/.1914

Let n be the order of G (and H ).1915

– (M#M;M#M): e1.AG/ and e2.AG/ are of dimension n#n. By assumption, e1.AG/ "T DT "e1.AH /1916

and e2.AG/ "T DT "e2.AH /. Hence,1917

e.AG/ "T De1.AG/ "e2.AG/ "T De1.AG/ "T "e2.AH /DT "e1.AH / "e2.AH /DT "e.AH /:1918

– (M#M;M#R): e1.AG/ is of dimension n#n and e2.AG/ is of dimension n#1. By assumption,1919

e1.AG/ "T DT "e1.AH / and e2.AG/DT "e2.AH /. Hence,1920

e.AG/De1.AG/ "e2.AG/De1.AG/ "T "e2.AH /DT "e1.AH / "e2.AH /DT "e.AH /:1921

– (M#R;R#M): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#n. By assumption, e1.AG/D1922

T "e1.AH / and e2.AG/ "T De2.AH /. Hence,1923

e.AG/ "T De1.AG/ "e2.AG/ "T De1.AG/ "e2.AH /DT "e1.AH / "e2.AH /DT "e.AH //:1924

– (M#R;R#R): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#1. By assumption, e1.AG/D1925

T "e1.AH / and e2.AG/De2.AH /. Hence,1926

e.AG/De1.AG/ "e2.AG/De1.AG/ "e2.AH /DT "e1.AH / "e2.AH /DT "e.AH //:1927

– (R#M;M#M): e1.AG/ is of dimension 1#n and e2.AG/ is of dimension n#n. By assumption,1928

e1.AG/ "T De1.AH / and e2.AG/ "T DT "e2.AH /. Hence,1929

e.AG/ "T De1.AG/ "e2.AG/ "T De1.AH / "T "e2.AH /De1.AH / "e2.AH /De.AH //:1930

– (R#M;M#R): e1.AG/ is of dimension 1#n and e2.AG/ is of dimension n#1. By assumption,1931

e1.AG/ "T De1.AH / and e2.AG/DT "e2.AH /. Hence,1932

e.AG/De1.AG/ "e2.AG/De1.AG/ "T "e2.AH /De1.AH / "e2.AH /De.AH /:1933

– (R#R;R#M): e1.AG/ is of dimension 1#1 and e2.AG/ is of dimension 1#n. By assumption, e1.AG/D1934

e1.AH / and e2.AG/ "T De2.AH /. Hence,1935

e.AG/ "T De1.AG/ "e2.AG/ "T De1.AG/ "e2.AH /De1.AG/ "e2.AH /De.AH /:1936

– (R#R;R#R): e1.A/ and e2.A/ are of dimension 1#1. By assumption, e1.AG/De1.AH / and e2.AG/D1937

e2.AH /. Hence, e.AG/De1.AG/ "e2.AG/De1.AH / "e2.AH /De.AH /.1938

This concludes the proof. ut1939

Proof of Proposition 7.41940

Proposition 7.4 JG. " ;!;i`;1;/B�;;C;#;�TTHvbŒf ";f 2#/-vectors are constant on equitable partitions.1941
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Proof Let LO denote f " ;!;i`;1;/B�;;C;#;�TTHvbŒf ";f 2#g. Consider a graph G of order n with equi-1942

table partition VDfV1; : : : ;V`g. As before, let 1V1 ; : : : ;1V`
be the corresponding indicator vectors. We will1943

show that for any expression e.X/2JG.LO/ such that e.AG/ is an n#1-vector, e.AG/ can be uniquely1944

written in the form
P`

iD1 ai #1Vi
for scalars ai 2.1945

We show, by induction on the structure of expressions in JG.LO/, that the following properties hold;1946

(a) if e.AG/ returns an n#n-matrix, then for any pair i;j D1;: : : ;` there exists a scalars aij ;bij 2 such1947

that1948

/B�;.1Vi
/ "e.AG/ "1Vj

Daij #1Vi
and 1i

Vj
"e.AG/ " /B�;.1Vi

/Dbij #1i
Vi

1949

(b) if e.AG/ returns an n#1-vector, then for any i D1;: : : ;`, there exists a scalar ai 2C such that1950

/B�;.1Vi
/ "e.AG/Dai #1Vi

:1951

Clearly, if (b) holds for every i D1;: : : ;`, then, fe;G WV ! is indeed constant on each part in V . We1952

remark these properties can be seen as generalization of the known fact that the vector space spanned by1953

indicator vectors of an equitable partition of G is invariant under multiplication by AG (See e.g., Lemma1954

5.2 in [14]). That is, for any linear combination v DP`
iD1 ai #1Vi

we have that A "v DP`
iD1 bi #1Vi

. In1955

our setting, (a) and (b) imply that e.AG/ "v is again a linear combination of indicator vectors, when e.AG/1956

returns an n#n-matrix. We next verify properties (a) and (b). We often use that I DP`
iD1 /B�;.1Vi

/ and1957

1DP`
iD1 1Vi

.1958

(base case) Let e.X/ WDX . The required property is simply a restatement of the being equitable. That is,1959

/B�;.1Vi
/ "e.AG/ "1Vj

D/2;.v;Vj /#1Vi
;1960

for an arbitrary vertex v 2Vi . So, we can take aij D/2;.v;Vj /. Similarly, because we AG is a symmetric1961

matrix,1962

1i
Vj

"e.AG/ " /B�;.1Vi
/D./B�;.1Vi

/ "e.AG/ "1Vj
/i D/2;.v;Vj /#1i

Vi
;1963

for an arbitrary vertex v 2Vi . So, we can take aij D/2;.v;Vj /.1964

For condition (a) we only verify that /B�;.1Vi
/ "e.AG/ "1Vj

Daij #1Vi
holds. The verification of1965

1i
Vj

"e.AG/ " /B�;.1Vi
/Dbij #1i

Vi
is entirely similar.1966

(multiplication) Let e.X/ WDe1.X/ "e2.X/. We distinguish between a number of cases, depending on the1967

dimensions of e1.AG/ and e2.AG/. We first check the cases when e.AG/ returns an n#n-matrix and need1968

to show that property (a) holds.1969

– (M#M;M#M): e1.AG/ and e2.AG/ are of dimension n#n. By induction, /B�;.1Vi
/ "e1.AG/ "1Vj

D1970

aij #1Vj
and1971

/B�;.1Vi
/ "e2.AG/ "1Vj

Dbij #1Vi
.1972

Then, /B�;.1Vi
/ "e.AG/ "1Vj

is equal to1973

/B�;.1Vi
/ "e1.AG/ "e2.AG/ "1Vj

D
X̀

kD1

/B�;.1Vi
/ "e1.AG/ " /B�;.1Vk

/ "e2.AG/ "1Vj
1974

D
X̀

kD1

bkj ##/B�;.1Vi
/ "e1.AG/ "1Vk

$D
%X̀

kD1

bkj #aik

&
#1Vi

;1975

as desired.1976

– (M#R;R#M): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#n. By induction we have that1977

/B�;.1Vi
/ "e1.AG/Dai #1Vi

and /B�;.1Vi
/ ".e2.AG//i Dbi #1Vi

. Hence, /B�;.1Vi
/ "e.AG/ "1Vj

1978

is equal to1979

/B�;.1Vi
/ "e1.AG/ "e2.AG/ "1Vj

Dai #.1Vi
"e2.AG/ "1Vj

/1980

D
X̀

kD1

ai #.1Vi
"e2.AG/ " /B�;.1Vk

/ "1Vj
/1981

D
X̀

kD1

ai #.1Vi
"#/B�;.1Vk

/ ".e2.AG//i$i "1Vj
/1982

D
X̀

kD1

.ai #bk/#.1Vi
"1i

Vk
"1Vj

/1983
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D.ai #bj #jVi j/#1Vi
1984

as desired.1985

Here we used that 1i
Vk

"1Vj
is either 0, in case that k ¤j , or jVj j in case that j Dk.1986

We next check that condition (b) holds when e.AG/ returns an n#1-vector.1987

– (M#M;M#R): e1.AG/ is of dimension n#n and e2.AG/ is of dimension n#1. By induction, we have that1988

/B�;.1Vi
/ "e1.AG/ "1Vj

Daij #1Vi
and /B�;.1Vi

/ "e2.AG/Dbi #1Vi
. Hence, /B�;.1Vi

/ "e.AG/ is1989

equal to1990

/B�;.1Vi
/ "e1.AG/ "e2.AG/D

X̀

j D1

/B�;.1Vi
/ "e1.AG/ " /B�;.1Vj

/ "e2.AG/1991

D
X̀

j D1

bj #./B�;.1Vi
/ "e1.AG/ "1Vj

/D
X̀

j D1

.aij #bj /#1Vi
;1992

as desired.1993

– (M#R;R#R): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#1. By induction we have1994

that /B�;.1Vi
/ "e1.AG/Dai #1Vi

and e2.AG/Db 2. Hence,1995

/B�;.1Vi
/ "e.AG/D/B�;.1Vi

/ "e1.AG/ "e2.AG/D.ai #b/#1Vi
;1996

as desired.1997

(ones vector) e.X/ WD1.e1.X//. We only need to consider the case when e1.AG/ is an n#n-matrix or
n#1-vector. In both cases, it suffices to observe that 1DP`

iD1 1Vi i . Indeed,
/B�;.1Vi

/ "e.AG/D/B�;.1Vi
/ "1D1Vi

:

(conjugate transpose) e.X/ WD.e1.X//!. If e1.AG/ returns a 1#n-vector, then /B�;.1Vi
/ ".e1.AG//i D

ai #1Vi
. Hence, /B�;.1Vi

/ "e1.AG/Da!
i #1Vi

. If e1.AG/ returns an n#n-matrix, then by induction,
1i

Vj
"e1.AG/ " /B�;.1Vi

/Dbij #1i
Vi

. Hence,

/B�;.1Vi
/ "e.AG/ "1Vj

D.1i
Vj

"e1.AG/ " /B�;.1Vi
//! Db!

ij #1Vi
;

as desired.1998

(diag operation) e.X/ WD/B�;.e1.X// where e1.AG/ is an n#1-vector. By induction, /B�;.1Vi
/ "e1.AG/D

ai #1Vi
. Hence, in view of the linearity of the diagonal operation,

/B�;.1Vi
/ "e.AG/ "1Vj

D
X̀

kD1

ai ##/B�;.1Vi
/ " /B�;.1Vk

/ "1Vj

$Dai #1Vi
;

since /B�;.1Vk
/ "1Vj

is 1Vj
when k Dj and the zero vector otherwise.1999

(addition) e.X/ WDe1.X/Ce2.X/. Clearly, when condition (a) or (b) hold for e1.AG/ and e2.AG/, they2000

remain to hold for e.AG/.2001

(scalar multiplication) e.X/ WDa#e1.X/. Clearly, when condition (a) or (b) hold for e1.AG/, they remain2002

to hold for e.AG/.2003

(trace) e.X/ WDi`.e1.X//. Such sub-expressions do not return matrices or vectors.2004

(pointwise function applications) e.X/ WD�TTHvbŒf ".e1.X/; : : : ;ep.X// where each ei .X/ is a sentence.2005

Again, such sub-expressions do not return matrices or vectors. ut2006

Continuation of the proof of Theorem 7.22007

In the main body of the paper we showed that, by using sentences in JG. " ;i`;1;1i;/B�;/, one can express2008

trace identities which imply the existence of an orthogonal doubly quasi-stochastic matrix O such that2009

AG "O DO "AH , and in addition, such that O is compatible with the common coarsest equitable partitions2010

of G and H . Moreover, we sketched an argument indicating that the use of 1i.X/ can be eliminated, and as2011

a consequence, JG. " ;i`;1;/B�;/-equivalence suffices to guarantee the existence of the desired orthogonal2012

matrix. We now detail the elimination procedure. More precisely, we show2013

by induction on the structure of expressions e.X/ in JG. " ;i`;1;1i;/B�;/, that2014

– If e.AG/ is an n#n-matrix, then e.X/&c#f .X/ "1.X/ "ei`.X/ "1i.X/ "g.X/;2015
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– If e.AG/ is an n#1-matrix, then e.X/&c#f .X/ "1.X/ "ei`.X/;2016

– If e.AG/ is a 1#n-matrix, then e.X/&c#ei`.X/ "1i.X/ "g.X/; and2017

– If e.AG/ is a 1#1-matrix, then e.X/&c#ei`.X/,2018

where c 2, f .X/ and g.X/ are expressions in JG. " ;i`;1;/B�;/ and ei`.X/ is an expression of the form2019
Y

i2K

i`.hi .X//;2020

with hi .X/ expressions in JG. " ;i`;1;/B�;/, for each i 2K. In the first case, 1.X/ "ei`.X/ "1i.X/ is op-2021

tional. This happens when e.X/ does not contain the 1i. "/ operation. Furthermore, also f .X/, g.X/ and the2022

expressions ei`.X/ may be optional. Nevertheless, we can always assume them to be f .X/D/B�;.1.X//,2023

g.X/D/B�;.1.X// and ei`.X/D1.i`./B�;.1.X///. Indeed, these evaluate to the identity matrix and Œ1",2024

respectively, and hence do not have an effect on the evaluation. In the following we therefore always assume2025

f .X/, g.X/ and ei`.X/ to be present. Similarly, we assume 1.X/ "ei`.X/ "1i.X/ to be present when e.AG/2026

returns a matrix, except for the base case. It can easily be shown that the case analysis below carries through2027

when 1.X/ "ei`.X/ "1i.X/ may be absent. As already mentioned in the main body of the paper, the key2028

insight is that we can replace any sub-expression 1i.X/ "e0.X/ "1.X/ by i`./B�;.e0.X/ "1.X// and that2029

1i.X/ only occurs in such sub-expressions in sentences in JG. " ;i`;1;1i;/B�;/.2030

(base case) e WDX . We have that e.X/&f .X/ with f .X/ WDX , which is of the desired form.2031

(multiplication) e.X/ WDe1.X/ "e2.X/. We distinguish between the following cases, depending on the2032

dimensions of e1.AG/ and e2.AG/.2033

– (M#M;M#M): e1.AG/ and e2.AG/ are of dimension n#n. By induction, e1.X/&c1 #f1.X/ "1.X/ "2034

e.1/
i` .X/ "1i.X/ "g1.X/ and e2.X/&c2 #f2.X/ "1.X/ "e.2/

i` .X/ "1i.X/ "g2.X/. This implies that2035

e.X/&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "1i.X/ "g1.X/ "f2.X/ "1.X/ "e.2/

i` .X/ "1i.X/ "g2.X/:2036

Because 1i.X/ "g1.X/ "f2.X/ "1.X/ is equivalent to ei`.X/ WDi`./B�;.g1.X/ "f2.X/ "1.X///, we
have2037

e.X/&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "ei`.X/ "e.2/

i` .X/ "1i.X/ "g2.X/;2038

which is of the desired form.2039

– (M#M;M#R): e1.AG/ is of dimension n#n and e2.AG/ is of dimension n#1. By induction, e1.X/&2040

c1 #f1.X/ "1.X/ "e.1/
i` .X/ "1i.X/ "g1.X/ and e2.X/&c2 #f2.X/ "1.X/ "e.2/

i` .X/. Hence,2041

e.X/&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "1i.X/ "g1.X/ "f2.X/ "1.X/ "e.2/

i` .X/2042

&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "ei`.X/ "e.2/

i` .X/;2043

where ei`.X/ WDi`./B�;.g1.X/ "f2.X/ "1.X/// and thus e.X/ is equivalent again to an expression of2044

the desired form.2045

– (M#R;R#M): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#n. By induction, e1.X/&2046

c1 #f1.X/ "1.X/ "e.1/
i` .X/ and e2.X/&c2 #e.2/

i` .X/ "1i.X/ "g2.X/. Hence,2047

e.X/&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "e.2/

i` .X/ "1i.X/ "g2.X/;2048

which is of the desired form.2049

– (M#R;R#R): e1.AG/ is of dimension n#1 and e2.AG/ is of dimension 1#1. By induction, e1.X/&2050

c1 #f1.X/ "1 "e.1/
i` .X/ and e2.X/&c2 #e.2/

i` .X/. Hence,2051

e.X/&.c1 #c2/#f1.X/ "1.X/ "e.1/
i` .X/ "e.2/

i` .X/;2052

which is already of the desired form.2053

– (R#M;M#M): e1.AG/ is of dimension 1#n and e2.AG/ is of dimension n#n. By induction, e1.X/&2054

c1 #e.1/
i` .X/ "1i.X/ "g1.X/ and e2.X/&c2 #f2.X/ "1.X/ "e.2/

i` .X/ "1i.X/ "g2.X/. As before, this2055

implies that2056

e.X/&.c1 #c2/#e.1/
i` .X/ "1i.X/ "g1.X/ "f2.X/ "1.X/ "e.2/

i` .X/ "1i.X/ "g2.X/2057

&.c1 #c2/#e.1/
i` .X/ "ei`.X/ "e.2/

i` .X/ "1i.X/ "g2.X/;2058

where ei`.X/ WDi`./B�;.g1.X/ "f2.X/ "1.X///.2059

– (R#M;M#R): e1.AG/ is of dimension 1#n and e2.AG/ is of dimension n#1. By induction, e1.X/&2060

c1 #e.1/
i` .X/ "1i.X/ "g1.X/ and e2.X/&c2 #f2.X/ "1.X/ "e.2/

i` .X/. Hence,2061

e.X/&.c1 #c2/#e.1/
i` .X/ "1i.X/ "g1.X/ "f2.X/ "1.X/ "e.2/

i` .X/:2062
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As before, let ei`.X/ WDi`./B�;.g1.X/ "f2.X/ "1.X///. Then,2063

e.X/&.c1 #c2/#e.1/
i` .X/ "ei`.X/ "e.2/

i` .X/;2064

as desired.2065

– (R#R;R#M): e1.AG/ is of dimension 1#1 and e2.AG/ is of dimension 1#n. By induction, e1.X/&2066

c1 #e.1/
i` .X/ and e2.X/&c2 #e.2/

i` .X/ "1i.X/ "g2.X/. Hence,2067

e.X/&.c1 #c2/#e.1/
i` .X/ "e.2/

i` .X/ "1i.X/ "g2.X/;2068

which is of the desired form.2069

– (R#R;R#R): e1.A/ and e2.A/ are of dimension 1#1. By induction, e1.X/&c1 #e.1/
i` .X/ and e2.X/&2070

c2 #e.2/
i` .X/. Clearly, this implies that e.X/&.c1 #c2/#e.1/

i` .X/ "e.2/
i` .X/ which is of the desired form.2071

(ones vector) e.X/ WD1.e1.X//. If e1.AG/ returns an n#n-matrix or n#1-vector, then e.X/ is equivalent2072

to 1.X/; if e1.AG/ returns a 1#n-vector or 1#1-matrix, then e.X/ is equivalent to i`.1.e1.X///.2073

(transposed ones vector) e.X/ WD1i.e1.X//. If e1.AG/ returns an n#n-matrix or n#1-vector, then e.X/2074

is equivalent to i`.1.e1.X///; if e1.AG/ returns a 1#n-vector or 1#1-matrix, then e.X/ is equivalent to2075

1.X/.2076

(trace) e.X/ WDi`.e1.X//. If e1.AG/ is a sentence, then e.X/&e1.X/.2077

If e1.AG/ is an n#n-matrix, then by induction, e1.X/&c#f1.X/ "1.X/ "ei`.X/ "1i.X/ "g1.X/. We2078

observe that2079

i`.f1.X/ "1.X/ "1i.X/ "g1.X//&1i.X/ "g1.X/ "f1.X/ "1.X/Di`./B�;.g1.X/ "f1.X/ "1.X///:2080

Hence,2081

e.X/&c#i`./B�;.g1.X/ "f1.X/ "1.X/// "ei`.X/;2082

which is of the desired form.2083

(diagonalisation) e.X/ WD/B�;.e1.X//. Here, e1.X/ can only be a 1#1-matrix or an n#1-vector. In2084

both cases, e1.X/ is equivalent, by induction, to an expression in JG. " ;i`;1;/B�;/. Hence, also e.X/ is2085

equivalent to an expression in this fragment. ut2086

Proof of Proposition 8.32087

Proposition 8.3 JG. " ;!;i`;1;ˇv ;/B�;;C;#;�TTHvbŒf ";f 2#/-vectors are constant on equitable parti-2088

tions2089

Proof Given that we verified this property of all operations except for ˇv in the proof of Proposition 7.4,2090

we only need to verify that ˇv can be added to the list of supported operations. We use the same induction2091

hypotheses as in the proof of Proposition 7.4 and verify that these hypotheses remain to hold for ˇv :2092

(pointwise vector multiplication) e.X/ WDe1.X/ˇv e2.X/ where e1.X/ and e2.X/ return vectors. By2093

induction we have that /B�;.1Vi
/ "e1.AG/Dai #1Vi

and /B�;.1Vi
/ "e2.AG/Dbi #1Vi

. As a consequence,2094

/B�;.1Vi
/ "e.AG/D/B�;.1Vi

/ "e1.AG/ˇv e2.AG/Dai #.1Vi
ˇv e2.AG//2095

X̀

j D1

ai #.1Vi
ˇv ./B�;.1Vj

/ "e2.AG//D
X̀

j D1

.ai #bj /#.1Vi
ˇv 1Vj

/2096

.ai #bi /#1Vi
;2097

because 1Vi
ˇv 1Vj

/ is either 1Vi
when i Dj , or the zero vector when i ¤j . ut2098

Continuation of the proof of Theorem 8.12099

In the proof in the main body of the paper we left open the verification that .1Vi
"1i

Vi
/ "O DO ".1Wi

"1i
Wi

/,2100

for i D1;: : : ;`, implies that O preserves the coarsest equitable partitions of G and H . In particular, we need2101

to verify that 1Vi
DO "1Wi

, for i D1;: : : ;`. This can be easily shown, just as in the proof of Theorem 7.22102

(based on Lemma 4 in Thüne [64]), in which we verified that J "O DO "J implies that 1DO "1.2103
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First, we observe that .1Vi
"1i

Vi
/ "O "1Wi

D1Vi
".1i

Vi
"O "1Wi

/D˛i #1Vi
with ˛i D1i

Vi
"O "1Wi

and2104

.1Vi
"1i

Vi
/ "O "1Wi

DO ".1Wi
"1i

Wi
/ "1Wi

D.1i
Wi

"1Wi
/#O "1Wi

. In other words, O "1Wi
D ˛i

ni
#1Vi

where2105

1i
Wi

"1Wi
DjWi jDni . Furthermore, because 1i

Vi
"Oi "1Wi

is a scalar, 1i
Wi

"Oi "1Vi
D.1i

Vi
"O "1Wi

/i D2106

1i
Vi

"O "1Wi
D˛i . We next show that ˛ D˙ni . Indeed, since O is an orthogonal matrix2107

ni D1i
Vi

"I "1Wi
D1i

Vi
"Oi "O "1Wi

D ˛i

ni

#.1i
Vi

"Oi "1Vi
/D ˛2

i

ni

;2108

and thus ˛2
i Dn2

i or ˛i D˙ni . Hence, O "1Wi
D˙1Vi

. We note that 1DP`
iD1 1Vi

DP`
iD1 1Wi

. We2109

now argue that either 1Vi
DO "1Wi

for all i D1;: : : ;`, or $1Vi
DO "1Wi

for all i D1;: : : ;`. Indeed,2110

suppose that we have 1Vi
DO "1Wi

for i 2K 'f1;: : : ;`g and $1Vi
DO "1Wi

for i 2 NK Df1;: : : ;`gnK, for2111

some non-empty subset K of f1;: : : ;`g. Then
P

i2K 1Vi
DO "#Pi2K 1Wi

$
and hence since

P
i2 NK 1Vi

D2112

1$Pi2K 1Vi
and

P
i2 NK 1Wi

D1$Pi2K 1Wi
,2113

X

i2 NK

1Vi
DO "#

X

i2 NK

1Wi

$
:2114

This contradicts that $Pi2 NK 1Vi
DO "#Pi2 NK 1Wi

$
. Hence, when 1Vi

DO "1Wi
for all i D1;: : : ;`, O2115

satisfies the desired property already. Otherwise, when $1Vi
DO "1Wi

for all i D1;: : : ;`, we simply2116

replace O by .$1/#O to obtain that O "1Wi
D1Vi

. This rescaling does not impact that AG "O DO "AH2117

and we can thus indeed conclude that O preserves the coarsest equitable partitions of G and H . ut2118
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