
The (expressive) power of graph learning
Floris Geerts (University of Antwerp)

Course

Is about recent advances in graph learning.

With an emphasis on the expressive power of learning methods.

Self-contained (too some extent).

Mostly high-level, but also low-level, so basically all levels.

Not all methods or related works are covered.

Will not report experiments…

About the speaker
Background in mathematics, database
theory* and expressive power of query
languages.

Since 2018, expressive power of linear
algebra.

Natural move to the study of
expressive power of graph neural
networks.

PhD in 2001. ;-(

Outline
Graph learning and expressive power

Message Passing Neural Networks

Boosting power:

Feature augmentation

Subgraphs

Higher-order message-passing ?Ask Questions

Indebted to Fabrizio Frasca, Beatrice Bevilacqua and Haggai Maron: Shamelessly :-) borrowed parts of their tutorial on expressive of GNNs at LOG 2022

Graph learning
And other stuff

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 4

Computer NetworksEvent Graphs

Underground NetworksFood Webs

Disease Pathways

Particle Networks
2/16/2023

Image credit: SalientNetworks

Image credit: Wikipedia
Image credit: Pinterest Image credit: visitlondon.com

Why learning on graphs?

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 5

Economic Networks

Citation Networks

Communication Networks

2/16/2023

Social Networks
Image credit: Medium

Networks of Neurons
Image credit: The Conversation

Internet
Image credit: Missoula Current News

Image credit: Science Image credit: Lumen Learning

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 6

Knowledge Graphs
Image credit: Maximilian Nickel et al

3D Shapes
Image credit: Wikipedia

Code Graphs
Image credit: ResearchGate

Molecules
Image credit: MDPI

Scene Graphs
Image credit: math.hws.edu

Regulatory Networks
Image credit: ese.wustl.edu

2/16/2023

Images: Machine Learning on Graphs,Course by Jure Leskovec

Graphs are everywhere!

Graphs: One definition to rule them all

Graph with

Vertex set

Edge set

Vertex labels:

G = (VG, EG, LG)

VG

EG ⊆ V2
G := VG × VG

LG : VG → Σ

Image: Wikipedia

Graphs: One definition to rule them all

Graph with

Vertex set

Edge set

Vertex labels:

G = (VG, EG, LG)

VG

EG ⊆ V2
G := VG × VG

LG : VG → Σ

ℝdVertex features Hot-one encoding

Image: Wikipedia

Adjacency matrix representation
Graph can also be represented by adjacency matrix

 and feature matrix

Let be the number of vertices. Let .

G = (VG, EG, LG)
AG FG

n = |VG | v, w ∈ [n] := {1,…, n}

adjacency matrix AG ∈ ℝn×n : (v, w) ↦ {1 (v, w) ∈ EG

0 otherwise

feature matrix FG ∈ ℝn×d : v ↦ LG(v)

Assumes an ordering on the vertices.

Graph learning

𝒢 = all graphs 𝕐 = output space

ℝd

…

Classical ML

Graph learning

𝒢 = all graphs 𝕐 = output space

Embedding method
ℝd

…

Classical ML

Embeddings

Graph embedding:

Vertex embedding:

-Vertex embedding:

ξ : 𝒢 → 𝕐

ξ : 𝒢 → (𝒱 → 𝕐)

p ξ : 𝒢 → (𝒱p → 𝕐)

𝒢 = all graphs
𝒱 = all vertices
𝕐 = output space

Graph embeddings
Graph embedding:

Graph classification/regression

ξ : 𝒢 → 𝕐

Toxic

Non toxic

ξ(G)

Vertex embeddings
Vertex embedding:

Vertex classification/regression. For example, prediction of subject
of papers.

ξ : 𝒢 → (𝒱 → 𝕐)

paper1 → math
paper2 → computer science

⋮ ⋮ ⋮
papern → biology

→

Images: Cora dataset

ξ(G, v)

p-Vertex embeddings
-Vertex embedding:

For example, 2-vertex embeddings: link prediction

p ξ : 𝒢 → (𝒱p → 𝕐)

(Joe, Anna)
(Anastasios, Mohammed)→

ξ(G, v, w)

…

↦
↦

link
no link

Graph learning tasks

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 25

Node level

Edge-level

Community
(subgraph)
level

Graph-level
prediction,
Graph
generation

Image: Machine Learning on Graphs, course Jure Leskovec

Graph level

Vertex level

Subgraph level

Edge/link level

� a

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

Many patients take multiple drugs to treat
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict

adverse side effects

,

Prescribed
drugs

Drug
side effect

30%
prob.

65%
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

Applications
Vertex classification: categorise online user/items,
location amino acids (protein folding, alpha fold)

Link prediction: knowledge graph completion,
recommender systems, drug side effect discovery

Graph classification: molecule property, drug
discovery

Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure
based solely on its amino acid sequence

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Image credit: DeepMind

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

� Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

� Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”
Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

� Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Images: Machine Learning on Graphs, course by Jure Leskovec

� a

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 40

Many patients take multiple drugs to treat
complex or co-existing diseases:

� 46% of people ages 70-79 take more than 5 drugs
� Many patients take more than 20 drugs to treat

heart disease, depression, insomnia, etc.
Task: Given a pair of drugs predict

adverse side effects

,

Prescribed
drugs

Drug
side effect

30%
prob.

65%
prob.

36Jure Leskovec, Stanford CS224W: Machine Learning with Graphs2/16/2023

Applications
Vertex classification: categorise online user/items,
location amino acids (protein folding, alpha fold)

Link prediction: knowledge graph completion,
recommender systems, drug side effect discovery

Graph classification: molecule property, drug
discovery

Subgraph tasks: traffic prediction

Computationally predict a protein’s 3D structure
based solely on its amino acid sequence

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 30

Image credit: DeepMind

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 34

Items

Users

� Users interacts with items
▪ Watch movies, buy merchandise, listen to music
▪ Nodes: Users and items
▪ Edges: User-item interactions

� Goal: Recommend items users might like

2/16/2023

Interactions

“You might also like”
Task: Recommend related pins to users

Query pin

8

Predict whether two nodes in a graph are related

Task: Learn node
embeddings 𝑧𝑖 such that
𝑑 𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑐𝑎𝑘𝑒2
< 𝑑(𝑧𝑐𝑎𝑘𝑒1, 𝑧𝑠𝑤𝑒𝑎𝑡𝑒𝑟)

𝑧

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs

Ying et al., Graph Convolutional Neural Networks for Web-Scale Recommender Systems, KDD 2018

2/16/2023

� Antibiotics are small molecular graphs
▪ Nodes: Atoms
▪ Edges: Chemical bonds

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 44

Konaklieva, Monika I. "Molecular targets of β-lactam-based antimicrobials:
beyond the usual suspects." Antibiotics 3.2 (2014): 128-142.

Image credit: CNN

Images: Machine Learning on Graphs, course by Jure Leskovec

GRAPH
LEARNING HAS
BECOME KEY

DATA
SCIENCE

COMPONENT

Graph learning

We want to learn an unknown embedding Ξ : 𝒢 → (𝒱p → 𝕐)

Graph learning

We want to learn an unknown embedding Ξ : 𝒢 → (𝒱p → 𝕐)

What does this mean???

Graph learning

We want to learn an unknown embedding Ξ : 𝒢 → (𝒱p → 𝕐)

What does this mean???

The embedding is partially revealed by means of a training set Ξ

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Graph learning

We want to learn an unknown embedding Ξ : 𝒢 → (𝒱p → 𝕐)

What does this mean???

The embedding is partially revealed by means of a training set Ξ

𝒯 := {(G1, v1, y1), …, (Gℓ, vℓ, yℓ)} ⊆ 𝒢 × 𝒱p × 𝕐

Ξ(G1, v1) Ξ(Gℓ, vℓ)

Training sets

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78

Ingredient #1: Training set

We want to learn � ∶ G → (Vp → Y) but we may only partially know this embedding ...

� Partial knowledge of � is revealed through a training set

T = ��G1,v1,�(G1,v1)�, . . . , �G¸,v¸,�(G¸,v¸)�� ⊆ G × Vp ×Y,

with graphs Gi ∈ G and p-vertex tuples vi in Gi .

2/16/2023 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 45

Stokes, Jonathan M., et al. "A deep learning approach to antibiotic discovery."
Cell 180.4 (2020): 688-702.

��A Graph Neural Network graph classification model��Predict promising molecules from a pool of candidates

Stokes et al., A Deep Learning Approach to Antibiotic Discovery, Cell 2020

(molecule,yes/no) (cora, paper, topic) (social,px ,py , yes/no)

16 / 78Graph classification Vertex classification Link prediction

Graph learning: hypothesis class

We want to find the best model consistent with training set 𝒯

Graph learning: hypothesis class

We want to find the best model consistent with training set 𝒯

What does this mean???

Graph learning: hypothesis class

We want to find the best model consistent with training set 𝒯

What does this mean???

Models are selected from an hypothesis class

In the graph setting consists of embeddings

ℋ

ℋ

Hypothesis classes

ℋ

2-IGN
MPNN

Graphormer

k-SAN

PPGN

CWN GIN

GSN

ChebNet Dropout GNN

CayleyNet

Id-aware GNN

GATs
GCNs

GraphSagek-IGNs

GNNsδ − k−

k-GNNs

Hypothesis classes

1000×

ℋ

2-IGN
MPNN

Graphormer

k-SAN

PPGN

CWN GIN

GSN

ChebNet Dropout GNN

CayleyNet

Id-aware GNN

GATs
GCNs

GraphSagek-IGNs

GNNsδ − k−

k-GNNs

Jure Leskovec, Stanford CS224W: Machine Learning with Graphs 13
2/16/2023

IC
LR

 2
02

2
ke

yw
or

ds

Explosion

Images: Machine Learning on Graphs, course J. Leskovec

Graph learning

𝒢 = all graphs 𝕐 = output space

Invariant
Embedding method

ℝd

…

Classical ML

Classical embedding methods depend on representation
E.g., think of MLP on vector representation of flattened adjacency matrix

A desired property: Invariance
Embeddings should be invariant, that is, independent of the chosen
graph representation.

Invariance is defined in terms of graph isomorphisms.

1

2

34

5

A

B

CD

E

π : VG → VH

G = (VG, EG) H = (VH, EH)

The mapping is a bijective vertex function satisfying
 also must hold.

π
(v, v′) ∈ EG ⟺ (π(v), π(w)) ∈ EH LG(v) = LH(π(v))

G ≅ H

Invariant embeddings

1
2

34

5

A

B

CD

E

for all π, G and v ∈ Vp
G : ξ(G, v) = ξ(π(G), π(v))

(1,4) and (B,C) have same embedding in 𝕐

π

We typically assume invariant embedding methods (unless said otherwise)

Isomorphism

Graph learning: ERM

Given training set and hypothesis class

Empirical risk minimisation:

Find embedding in which minimises empirical loss

𝒯 ℋ

ξ ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

Loss function is a mapping from 𝕐 × 𝕐 → ℝ

ℋ

ξBest one!

Loss functions

L1:

L2:

(Binary) cross entropy:

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := |ypredicted − ytrue |

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := (ypredicted − ytrue)2

𝗅𝗈𝗌𝗌(ypredicted, ytrue) := ytrue log(ypredicted + (1 − ytrue)log(1 − ypredicted)

Choice depends on learning task (regression, classification,…)

Graph learning

Graph learning systems solve ERM using back propagation and
gradient descent…

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

Graph learning

Graph learning systems solve ERM using back propagation and
gradient descent…

̂ξ : arg min
ξ∈ℋ

1
ℓ

∑ℓ
i=1 𝗅𝗈𝗌𝗌(ξ(Gi, vi), yi))

Our focus will be on the expressive power of hypothesis classes

Expressive power

Which embeddings can be expressed by embeddings in ?

Which embeddings can be approximated by embeddings in ?

Which inputs can be separated/distinguished by embeddings in ?

ℋ

ℋ

ℋ

Notions of expressivity I

 can -express if there exists a
such that for all

 can -approximate if for any
there exists a such that for all

ℋ 𝒞 Ξ ξ ∈ ℋ
G ∈ 𝒞, v ∈ Vp

G :
ξ(G, v) = Ξ(G, v)

ℋ 𝒞 Ξ ϵ > 0
ξϵ ∈ ℋ

G ∈ 𝒞, v ∈ Vp
G : ∥ξϵ(G, v) − Ξ(G, v)∥ ≤ ϵ

Let be a -vertex embedding and let be a subset of Ξ : 𝒢 → (𝒱p → 𝕐) p 𝒞 𝒢

ξϵ(G, v)

Ξ(G, v)
Ξ(G, v) + ϵ

Ξ(G, v) − ϵ

(G, v)

Notions of expressivity II

Separation/distinguishing power of

All pairs of inputs that cannot be separated by any embedding in

ℋ

ρ(ℋ) := {(G, v, H, w) ∣ ∀ξ ∈ ℋ : ξ(G, v) = ξ(H, w)}

ℋ

Distinguishing power

Strongest power: powerful
enough to detect non-isomorphic
graphs

Weakest power: cannot
differentiate any two graphs

ℋ

ℋ

Expressive

Expressive ρ(ℋ)

ρ(ℋ)

Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

Methods1 is more powerful than Methods2
 Methods 2 is bounded by Methods 1 in power

ρ(methods1) = ρ(methods2)

Both methods are as powerful

Allows for comparing different classes of embeddings methods!

Allows for comparing embedding methods with algorithms, logic, …

Distinguishing power

ρ(methods1) ⊆ ρ(methods2)

Methods1 is more powerful than Methods2
 Methods 2 is bounded by Methods 1 in power

ρ(methods1) = ρ(methods2)

Both methods are as powerful

Allows for comparing different classes of embeddings methods!

Allows for comparing embedding methods with algorithms, logic, …

Expressive power in ML community

Focus has been on distinguishing power of classes of embedding
methods.

Goal is to characterise in a way to sheds light on what graph
properties a learning method can detect/use.

We see an example shortly for the class of Message-Passing
Neural Networks (MPNNs)

ℋ

ρ(ℋ)

ℋ =

Expressive power in ML community

Search for increase in expressive
power has led to surge of new
methods of graph learning.

Despite theoretical underpinning…
still a bit of alchemy to find the right
method…

ℋ
Complexity

Ex
pr

es
siv

en
es

s

We will gradually fill in this landscape
 with recent graph learning methods

Questions?

Message Passing Neural Networks
The most popular type of GNNs

A little history
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

A little history
��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Fi
ng
er
pr
in
ts
fo
r
ch
em

ic
al
si
m
ila
rit
y

��
��

Sy
st
em

at
ic
ev
al
ua
tio
n
of
fin
ge
rp
rin
ts

��
��

Ch
em

Ne
t

��
��

Ex
te
nd
ed

co
nn
ec
tiv
ity

fin
ge
rp
rin
ts

��
��

Ra
nd
om

w
al
k
ke
rn
el
s

��
��

Tr
ee

pa
tt
er
n
ke
rn
el
s

��
��

Cy
cl
e
an
d
Tr
ee

ke
rn
el

��
��

Sh
or
te
st
-p
at
h
ke
rn
el

��
��

Ke
rn
el
s
fr
om

ch
em

ic
al
si
m
ila
rit
ie
s

��
��

Op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

M
ol
ec
ul
ar
gr
ap
h
ne
tw
or
ks

��
��

Gr
ap
hl
et
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

Ha
sh

Ke
rn
el

��
��

W
ei
sf
ei
le
r-
Le
hm

an
ke
rn
el
s

��
��

Ne
ig
hb
or
ho
od

su
bg
ra
ph

ke
rn
el

��
��

Su
bg
ra
ph

m
at
ch
in
g
ke
rn
el

��
��

Gr
ap
hH
op
pe
r
ke
rn
el

��
��

Ge
ne
ra
liz
ed

sh
or
te
st
-p
at
h
ke
rn
el

��
��

Gr
ap
h
In
va
ria
nt
ke
rn
el
s

��
��

Ne
ur
al
m
ol
ec
ul
ar
fin
ge
rp
rin
ts

��
��

De
sc
rip
to
r
m
at
ch
in
g
ke
rn
el

��
��

Ha
sh

gr
ap
h
ke
rn
el
s

��
��

Va
lid

op
tim

al
as
si
gn
m
en
t
ke
rn
el
s

��
��

Gr
ap
h
co
nv
ol
ut
io
na
ln
et
w
or
ks

��
��

Ne
ur
al
m
es
sa
ge

pa
ss
in
g

��
��

Gr
ap
hS
AG
E

��
��

Sp
lin
eC
NN

��
��

k
-G
NN

��
��

Image: Christopher Morris

Message passing neural networks

𝒢 = all graphs 𝕐 = output space

Invariant
MPNNs

ℝd

…

Classical ML

A class of invariant vertex and graph embedding methods

Scarcelli et al.: The graph neural network model (2005),
Hamilton et al.: Inductive representation learning on large graphs (2017)
Gilmer et al.: Neural message passing for quantum chemistry (2017)

Idea behind MPNNs: Neighbour aggregation
Intuition:Network neighborhood defines a
computation graph

Jure Leskovec, Stanford University 19

Every node defines a computation
graph based on its neighborhood!

Intuition:Network neighborhood defines a
computation graph

Jure Leskovec, Stanford University 19

Every node defines a computation
graph based on its neighborhood!

Every vertex defines a computation graph

Neural networks

Images: Machine Learning on Graphs, Course by Jure Leskovec

MPNNs: Vertex embedding
ξ(G, v) := ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Message Passing Layers

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))“Inductive biases” and upsides of MPNNs

• Sparse computation
• Linear complexity1

• Locality

1in the number of edges.

• Equivariant (layers)

• Invariant (whole)

13

MPNNs: Vertex embedding
ξ(G, v) := ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Message Passing Layers

Message Passing between and its
neighbours

v
u ∈ NG(v)

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))“Inductive biases” and upsides of MPNNs

• Sparse computation
• Linear complexity1

• Locality

1in the number of edges.

• Equivariant (layers)

• Invariant (whole)

13

MPNNs: Vertex embedding
ξ(G, v) := ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Message Passing Layers

Message Passing between and its
neighbours

v
u ∈ NG(v)

Update and aggregate function contain
learnable parameters (NNs)

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))“Inductive biases” and upsides of MPNNs

• Sparse computation
• Linear complexity1

• Locality

1in the number of edges.

• Equivariant (layers)

• Invariant (whole)

13

MPNNs: Graph embedding
ρ(G) := ρ ∘ ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Readout

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})
Has learnable parameters

Typical choices for update, aggregate and readout: Multilayer Perceptrons

MPNNs: Graph embedding
ρ(G) := ρ ∘ ξ(L) ∘ ξ(L−1) ∘ ⋯ ⋅ ∘ ξ(0)(G, v)

Readout

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})
Has learnable parameters

Typical choices for update, aggregate and readout: Multilayer Perceptrons

Aggregation over all vertices

MPNN example: GNN 101
Non-linear activation function (ReLU, sign, sigmoid, …)

 denotes embedding of vertex

Weight matrices and and bias vector

σ

F(t)
v∙ ∈ ℝd v

W(t)
1 ∈ ℝd×d W(t)

2 ∈ ℝd×d

b ∈ ℝ1×d

F(0)
v∙ := LG(v)

F(t)
v∙ := σ (F(t−1)

v∙ W(t)
1 + ∑u∈NG(v) F(t−1)

u∙ W(t)
2 + b(t))

F(t) := σ (F(t−1)W(t)
1 + AF(t−1)W(t)

2 + B(t))
Image: TheAiEdge.io

Embedding vertex labels

Aggregation over
neighboursMatrix form

GNN 101: Graph embedding

Weight matrix and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

F(t) := σ ∑
v∈VG

F(L)W + b

Aggregation over all
vertices

GNN 101: Graph embedding

Weight matrix and and bias vector W ∈ ℝd×d b ∈ ℝ1×d

F(t) := σ ∑
v∈VG

F(L)W + b

ERM: Find best parameters W(1)
1 , …, W(L)

1 , W(1)
2 . …, W((L)

2 , W, b(1), …, b(L), b

Aggregation over all
vertices

Two more examples of MPNNs
Graph Isomorphism Networks (GIN)

Graph Convolution Network (GCN)

GIN: Xu et al.: How powerful are graph neural networks? (2019)
GCN: Kipf and Welling: Semi-supervised classification with graph convolutional networks (2017)

F(t)
v∙ := 𝖬𝖫𝖯(t) ((1 + ϵ(t))F(t−1)

v∙ + ∑u∈NG(v) F(t−1)
u∙)

F(t)
v∙ := 𝖬𝖫𝖯(t) (1

|NG(v) + 1
∑u∈NG(v)∪{u}

1
|NG(u) + 1

F(t−1)
u∙)

MPNNs: Expressive power
What is ρ(MPNNs)?

MPNNs: Expressive power
What is ρ(MPNNs)?

Recall: All pairs of graphs such that all MPNNs return same
graph embedding on both graphs.

(G, H)

MPNNs: Expressive power
What is ρ(MPNNs)?

Recall: All pairs of graphs such that all MPNNs return same
graph embedding on both graphs.

(G, H)

Understanding translates in understanding power of
GNN 101, GCNs, GINs, ….

ρ(MPNNs)

MPNNs: Expressive power
What is ρ(MPNNs)?

Recall: All pairs of graphs such that all MPNNs return same
graph embedding on both graphs.

(G, H)

A short detour to graph isomorphism testing

Understanding translates in understanding power of
GNN 101, GCNs, GINs, ….

ρ(MPNNs)

MPNNs and isomorphic graphs
Because of invariance: MPNNs embed isomorphic graphs in the
same way. That is, if

Can MPNNs embed non-isomorphic graphs differently?

G ≅ H ⇒ (G, H) ∈ ρ(MPNN)

𝒢

Equivalence class of
Isomorphic graphs

𝕐

MPNN

Graph learning task

The graph isomorphism problem

Given two graph and : are they
isomorphic? Or is

Does there exist a graph isomorphism ?

Theory: computational complexity is open.

Quasi-polynomial algoritm by László Babai (2016).

Practice: mostly solvable very fast.

G = (VG, EG, LG) H = (VH, EH, LH)
G ≅ H?

π : VG → VH

nlog(n)𝒪(1)

L. Babai: Graph isomorphism in quasipolynomial time (2016)

One-sided test: Colour refinement

Apply heuristic on and : If Heuristic say
“no” then , otherwise we do not know.

Common heuristic is colour refinement

In paper 1968 by Boris Weisfeiler and Andrei
Leman.

G H
G ≇ H

Are these
 graphs

isomorphic
?

Colour
REFINEMENT

Says No …

B. Weisfeiler and A. Leman. The reduction of a graph to canonical form and the algebra which appears therein (1968)

Colour refinement

(
(
(

)
)

)

G H

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Neighbours

Colour refinement

(
(
(

)
)

)

G H

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Neighbours

Colour refinement

(
(
(

)
)

)

G H

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Neighbours

()

)(
)(

()
()

()
()

Colour refinement

(
(
(

)
)

)

G H

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Neighbours

()

)(
)(

()
()

()
()

Colour refinement

(
(
(

)
)

)

G H

G ≇ H

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Neighbours

()

)(
)(

()
()

()
()

Colour refinement

(
(

)
)

G H

Stops when colour partition does not change (max iterations)n

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

(
(

)
)

G H

Stops when colour partition does not change (max iterations)n

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

(
(

)
)

G H

()
()

Stops when colour partition does not change (max iterations)n

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

(
(

)
)

G H

()
()

Stops when colour partition does not change (max iterations)n

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

(
(

)
)

G H

G ≅ H?

()
()

Stops when colour partition does not change (max iterations)n

Initial: All vertices have their original colour (label)

Iteration: Separation of identically coloured vertices based on colour
histograms of neighbours.

Two graphs are non-isomorphic if they have different colour histograms.

Color refinement

Extensively studied in the theoretical computer science community

Many different characterisations of when two graphs have the same
colour histograms (equivalent for colour refinement).

Successful on random graphs with high probability

Weak expressive power

L. Babai and L. Kucera. Canonical labelling of graphs in linear average time (1979)
Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)
Arvind et al.: On the power of color refinement (2015)
M. Grohe: Descriptive Complexity, Canonisation, and Definable Graph Structure Theory (2017)
Arvind et al.: On WL invariance: Subgraph Counts and related properties (2019)
M. Grohe. The logic of graph neural networks (2021)

ρ(colour refinement)

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Cannot distinguish d-regular graphs

Cannot count cycles (triangles)

Only tree information

Arvind et al.: On the power of color refinement (2015)
Images: Wolfram MathWorld, Christopher Morris

3-regular graphs

ρ(colour refinement)

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Limits of �-WL and GNNs

Observation
GNNs cannot distinguish very basic graph properties, e.g.,

• Cycles of di�erent lengths
• Triangle counts
• Regular graphs

(a) Bicyclopentyl (b) Decalin
��

Cannot distinguish d-regular graphs

Cannot count cycles (triangles)

Only tree information

Arvind et al.: On the power of color refinement (2015)
Images: Wolfram MathWorld, Christopher Morris

3-regular graphs

Back to MPNNs

MPNNs & Colour refinement
If colour refinement cannot tell two graphs apart

then neither can any MPNN!

Theorem (Xu et al. 2019, Morris et al. 2019)

Xu et al.: How powerful are graph neural networks? (2019)
Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

MPNNs & Colour refinement
If colour refinement cannot tell two graphs apart

then neither can any MPNN!

Theorem (Xu et al. 2019, Morris et al. 2019)

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))
ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

𝖼𝗋(0)(G, v) := Initial label of v

𝖼𝗋(t)(G, v) := 𝖧𝖺𝗌𝗁(𝖼𝗋(t−1)(G, v), {{𝖼𝗋(t−1)(G, u) ∣ u ∈ NG(v)}})
ρ(G) := {{𝖼𝗋(G, v) ∣ v ∈ VG}}

MPNNs Color refinement

Xu et al.: How powerful are graph neural networks? (2019)
Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

MPNNs & Colour refinement
If colour refinement cannot tell two graphs apart

then neither can any MPNN!

Theorem (Xu et al. 2019, Morris et al. 2019)

ξ(0)(G, v) := Hot-one encoding of label of vertex v

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))
ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

𝖼𝗋(0)(G, v) := Initial label of v

𝖼𝗋(t)(G, v) := 𝖧𝖺𝗌𝗁(𝖼𝗋(t−1)(G, v), {{𝖼𝗋(t−1)(G, u) ∣ u ∈ NG(v)}})
ρ(G) := {{𝖼𝗋(G, v) ∣ v ∈ VG}}

MPNNs Color refinement

G H G H

No MPNN can separate these graphs

Xu et al.: How powerful are graph neural networks? (2019)
Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

MPNNs & Colour refinement

ρ(colour refinement) ⊆ ρ(MPNNs)

Expressive power of MPNNs is upper bounded by colour refinement

Expressive

Expressive ρ(ℋ)

ρ(ℋ)Recall:

We have just shown:

Lower bound?
We have seen that MPNNs cannot separate more graphs than
colour refinement.

Can colour refinement separate more graphs than MPNNs?

Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

Lower bound?
We have seen that MPNNs cannot separate more graphs than
colour refinement.

Can colour refinement separate more graphs than MPNNs?

There exists a GNN 101 which can embed and
differently when colour refinement assigns them

different colours

G H
Theorem (Morris et al. 2019)

The class of MPNNs is as powerful (or weak) as colour refinement

Morris et al: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

No!

What else can we say?
ρ(colour refinement) = ρ(MPNNs)

What else can we say?
ρ(colour refinement) = ρ(MPNNs)

Other - more insightful - characterisations?

What else can we say?
ρ(colour refinement) = ρ(MPNNs)

Other - more insightful - characterisations?

A detour to homomorphism counts

Homomorphisms
Let and be graphs.

A function is a homomorphism if it is edge preserving
 and label preserving.

P = (VP, EP, LP) G = (VG, EG, LG)

h : VP → VG
(v, w) ∈ Ep ⇒ (h(v), h(w)) ∈ EG

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4 2#edges=10

Homomorphism counts
Define

Define .

𝖧𝖮𝖬(P, G) := { all homomorphisms from P to G}

𝗁𝗈𝗆(P, G) := |𝖧𝖮𝖬(P, G) |

𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,) 𝗁𝗈𝗆 (,)

#vertices = 4 2#edges=10 70 = 2 ⋅ 23 + 2 ⋅ 33

Homomorphisms
Weaker notion than subgraph isomorphism (see later)

Underlies semantics of many graph query languages

Algebra of homomorphism counts: A rich and active area of
research.

Homomorphisms
Weaker notion than subgraph isomorphism (see later)

Underlies semantics of many graph query languages

Algebra of homomorphism counts: A rich and active area of
research.

Back to MPNNs

 for all trees
 if and only if

colour refinement cannot distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

MPNNs and hom counts

MPNNs can only detect tree information from a graph!

Theorem (Dell et al. 2019, Dvorák 2010)

Z. Dvoräk: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

 for all trees if and only if no
MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Corollary

Follows from ρ(cr) = ρ(MPNN)

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

GIN
GCN

1-WL

Message passing

Beyond distinguishing power?

Logical expressiveness

Approximation properties (universality)

Colour refinement (again)
It was mentioned that has many characterisations.

Of interest is also a logical one, in particular First-order logic with 2
variables and counting quantifiers ().

ρ(colour refinement)

C2

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)
M. Grohe. The logic of graph neural networks (2021)

unary label predicatebinary edge predicate

Given graph , vertex satisfies :G v ∈ VG φ
(G, v) ⊧ φ

Colour refinement (again)
It was mentioned that has many characterisations.

Of interest is also a logical one, in particular First-order logic with 2
variables and counting quantifiers ().

ρ(colour refinement)

C2

φ(x) = ∃≤5y (E(x, y) ∧ ∃≥2x (E(y, x) ∧ La(x)))

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)
M. Grohe. The logic of graph neural networks (2021)

unary label predicatebinary edge predicate

Given graph , vertex satisfies :G v ∈ VG φ It has at most 5 neighbours
each with at least to neighbours labeled “a”(G, v) ⊧ φ

Colour refinement and 𝖢2

Two vertices in a graph have the same colour after t iterations
of colour refinement if and only if these vertices satisfy the same

unary formulas of quantifier depth C2 t

Theorem (Cai et al. 1992)

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)
M. Grohe. The logic of graph neural networks (2021)

ρ(colour refinement) = ρ(MPNNs) = ρ(𝖢2)

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

 can -express if there exists a
such that for all

ℋ 𝒞 Ξ ξ ∈ ℋ
G ∈ 𝒞, v ∈ Vp

G :
ξ(G, v) = Ξ(G, v)

I am blue and there exist
 a red vertex somewhere…

Which unary formulas can MPNNs express?C2

Not all: φ(x) := Lb(x) ∧ ∃yLr(y)

Cannot be reached by message passing!

 can -express if there exists a
such that for all

ℋ 𝒞 Ξ ξ ∈ ℋ
G ∈ 𝒞, v ∈ Vp

G :
ξ(G, v) = Ξ(G, v)

I am blue and there exist
 a red vertex somewhere…

Which unary formulas can MPNNs express?C2

Not all:

Graded modal logic: syntactical fragment of in which quantifiers
are of the form

φ(x) := Lb(x) ∧ ∃yLr(y)

C2
∃≥N(E(x, y) ∧ φ′ (y))

Let be a unary formula. Then, is equivalent to a
graded modal logic formula if and only if is expressible by

the class of MPNNs.

φ(x) C2 φ(x)
φ(x)

Theorem (Barceló et al. 2020)

∃ξ ∈ MPNNs : ∀G ∈ 𝒢, ∀v ∈ VG : (G, v) ⊧ φ ⇔ ξ(G, v) = 1

Barceló et al.: The logical expressiveness of graph neural networks (2020)

MPNN+: Extended MPNNs
Can we extend MPNNs such that all formulas (including

) can be expressed?
C2

φ(x) := Lb(x) ∧ ∃yLr(y)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}}))

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u) ∣ u ∈ NG(v)}})
𝖱𝖾𝖺𝖽(t)({{ξ(t)(G, u) ∣ u ∈ VG}}))

Add global aggregation in every layer

Barceló et al.: The logical expressiveness of graph neural networks (2020)

MPNNs+

Every unary formula is expressible by the class of MPNNs+C2 φ(x)
Theorem (Barceló et al. 2020)

Can MPNN+ express more formulas? Open problem.

The corresponding colour refinement version is known as the one-
dimensional Weisfeiler-Leman algorithm or 1-WL

ρ(1-WL) = ρ(MPNNs+)

Barceló et al.: The logical expressiveness of graph neural networks (2020)

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

Message passing

Approximation properties
Equip set of graphs with a topology and assume that consist of
continuous graph embeddings from to .

Let be a compact set of graphs.

𝒢 ℋ
𝒢 ℝ

𝒞 ⊆ 𝒢

 If is closed under linear combinations and
product, then can approximate any
continuous function satisfying

ℋ
ℋ 𝒞−

Ξ : 𝒞 → ℝ
ρ(ℋ) ⊆ ρ({Ξ}) .

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Can be generalised to general embeddings with output space ℝd

Stone-Weierstrass

W. Azizian and M. Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

MPNNs: Approximation

We know

Update functions can be used to approximate product and take linear
combinations of MPNNs

ρ(MPNNs) = ρ(colour refinement)

On compact set of graphs, MPNNs can
approximate any continuous graph embedding

 satisfying Ξ : 𝒞 → ℝ
ρ(colour refinement) ⊆ ρ({Θ})

Theorem (Azizian & Lelarge 2021, G. and Reutter 2022)

Intricate relation between distinguishing power and approximation properties

W. Azizian and M. Lelarge: Characterizing the expressive power of invariant and equivariant graph neural networks (2021)
G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Universality and graph isomorphism
In order for a class of methods to be able o

approximate any (invariant) continuous functions,
the class of methods should be able to distinguish

any two non-isomorphic graphs.

Theorem (Chen et al. (2019)

ρ(ℋ) ⊆ ρ({Ξ})Minimal size

(G, H) ∈ ρ(ℋ) ⇔ G ≅ H

Proof

Chen et al.: On the equivalence between graph isomorphism testing and function approximation with GNNs (2019)

Questions?

Feature Augmentation
Boost the expressive power by adding information

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

More expressive MPNNs?

Message passing

Feature engineering
Deep learning and MPNNs have replaced “old school” feature
engineering approach.

Number of edges
Number of cycles of length 5
Centrality measures

ℝd SVM

MPNNs were supposed to learn such features automatically …

 for all trees if and only if
no MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Idea #1: Adding expressive features
Theorem

Recall:

 for all trees if and only if
no MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Idea #1: Adding expressive features

What if we add subgraph information before doing message-
passing?

Theorem

More than trees

Recall:

 for all trees if and only if
no MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T
G H

Idea #1: Adding expressive features

What if we add subgraph information before doing message-
passing?

Theorem

More than trees

Recall:

We will try this
out later in the hands-

on session!

Structural encodings

1.Choose collection of rooted graph patterns/motifs

2.Choose how to match subgraphs in with data graph

3.Add count of matches to vertices as extended features.

𝒫 G

𝒫 = { }C6 C5

Homomorphism
Subgraph isomorphism

2

Pr = (VP, EP, {r})
r

r r

𝒫 := {Pr
1, …, Pr

ℓ}

Matches

Homomorphism: edge preserving

Subgraph isomorphism: bijection , edge
preserving

Induced subgraph isomorphism:
bijection, edge preserving (both ways)

π : VP → VS ⊆ VG containing v

Pr = (VP, EP, {r})
r

v

v

v

𝗁𝗈𝗆(Pr, Gv)

𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

𝗂𝗇𝖽𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

Matches

Homomorphism: edge preserving

Subgraph isomorphism: bijection , edge
preserving

Induced subgraph isomorphism:
bijection, edge preserving (both ways)

π : VP → VS ⊆ VG containing v

Pr = (VP, EP, {r})
r

v

v

v

𝗁𝗈𝗆(Pr, Gv)

𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

𝗂𝗇𝖽𝗌𝗎𝖻𝗂𝗌𝗈(Pr, Gv)

Counts

-MPNNs𝒫

ξ(0)(G, v) := Hot-one encoding of label of vertex v + 𝗁𝗈𝗆(Pr
1, Gv), …, 𝗁𝗈𝗆(Pr

ℓ, Gv)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), 𝗁𝗈𝗆(Pr
1, Gu), …, 𝗁𝗈𝗆(Pr

ℓ, Gu) ∣ u ∈ NG(v)}}))
ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

-MPNNs𝒫

Add structural encoding as vertex features and run MPNN

Did we increase expressive power?

Barceló et al.: Graph neural networks with local graph parameters. (2021)

𝒫 := {Pr
1, …, Pr

ℓ}

hom counts of patterns

Barceló et al.: Graph neural networks with local graph parameters. (2021)

-MPNNs𝒫

We have seen that these graphs equivalent for colour refinement but
clearly not for -MPNNs.

So, increase in power!

What is their precise expressive power?

v

(2)
(2) (2)

(2) (2)
(2)

G1

w

(0)
(0) (0)

(0) (0)
(0)

H1

Figure 1: Two graphs that are indistinguishable by the WL-test. The numbers between round
brackets indicate how many homomorphic images of the 3-clique each vertex is involved in.

As a consequence, noMPNN can detect that vertex v in Fig. 1 is part of a 3-clique, whereasw is not.
Similarly, MPNNs cannot detect that w is part of a 4-cycle, whereas v is not. Further limitations
of WL in terms of graph properties can be found, e.g., in Fürer (2017); Arvind et al. (2020); Chen
et al. (2020); Tahmasebi & Jegelka (2020).

To remedy the weak expressive power ofMPNNs, so-called higher-orderMPNNs were proposed
(Morris et al., 2019; Maron et al., 2019b; Morris et al., 2020), whose expressive power is measured
in terms of the k-dimensional WL procedures (k-WL) (Maron et al., 2019a; Chen et al., 2019a;
Azizian & Lelarge, 2021; Geerts, 2020; Sato, 2020; Damke et al., 2020). In a nutshell, k-WL

operates on k-tuples of vertices and allows to distinguish vertices (graphs) based on structural
information related to graphs of treewidth k (Dvorak, 2010; Dell et al., 2018). By definition,
WL = 1-WL. As an example, 2-WL can detect that vertex v in Fig. 1 belongs to a 3-clique or a
4-cycle since both have treewidth two. While more expressive than WL, the GNNs based on k-WL

require O(nk) operations in each iteration, where n is the number of vertices, hereby hampering
their applicability.

A more practical approach is to extend the expressive power of MPNNs whilst preserving their
O(n) cost in each iteration. Various such extensions (Kipf & Welling, 2017; Chen et al., 2019a; Li
et al., 2019; Ishiguro et al., 2020; Bouritsas et al., 2020; Geerts et al., 2020) achieve this by infusing
MPNNs with local graph structural information from the start. That is, the iterative message
passing scheme of MPNNs is run on vertex labels that contain quantitative information about local
graph structures. It is easy to see that such architectures can go beyond the WL test: for example,
adding triangle counts to MPNNs su�ces to distinguish the vertices v and w and graphs G1 and
H1 in Fig. 1. Moreover, the cost is a single preprocessing step to count local graph parameters,
thus maintaining the O(n) cost in the iterations of the MPNN. While there are some partial results
showing that local graph parameters increase expressive power (Bouritsas et al., 2020; Li et al.,
2019), their precise expressive power and relationship to higher-order MPNNs was unknown, and
there is little guidance in terms of which local parameters do help MPNNs and which ones do not.
The main contribution of this paper is a precise characterization of the expressive power of MPNNs
with local graph parameters and its relationship to the hierarchy of higher-order MPNNs.

Our contributions. In order to nicely formalize local graph parameters, we propose to extend
vertex labels with homomorphism counts of small graph patterns.1 More precisely, given a graphs

1We recall that homomorphisms are edge-preserving mappings between the vertex sets.

2

𝒫 = { }

= hom count(c)

 for all pattern trees if
and only if no P-MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T
G H

-MPNNs: Expressive power𝒫
Theorem

Barceló et al.: Graph neural networks with local graph parameters. (2021)

 for all pattern trees if
and only if no P-MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T
G H

-MPNNs: Expressive power𝒫
Theorem

Expressive Power of F -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:
MPNNs F -MPNNs

Homomorphism counts are equal for Homomorphism counts are equal for
every rooted tree (Dell et al., 2018). every F-pattern tree (our contribution).

with:
Rooted trees S r : a graph without cycles
and a designated root

F -pattern tree T
r : backbone tree S

r

with vertices s ∈ VS joined with copies
of patterns in F

11 / 17

𝒫 = { }

Barceló et al.: Graph neural networks with local graph parameters. (2021)

Take tree: add in each tree vertex
copies of rooted patterns

 for all pattern trees if
and only if no P-MPNN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T
G H

-MPNNs: Expressive power𝒫
Theorem

Expressive Power of F -MPNNs

In graphs G and H, vertices v and w are indistinguishable (embedded in the same way)
if:
MPNNs F -MPNNs

Homomorphism counts are equal for Homomorphism counts are equal for
every rooted tree (Dell et al., 2018). every F-pattern tree (our contribution).

with:
Rooted trees S r : a graph without cycles
and a designated root

F -pattern tree T
r : backbone tree S

r

with vertices s ∈ VS joined with copies
of patterns in F

11 / 17

𝒫 = { }
Table 2: The e�ect of di�erent cycles for the GAT model over the ZINC dataset, using mean
absolute error.

S�� (F) MAE

N��� 0.47±0.02
{C3} 0.45±0.01
{C4} 0.34±0.02
{C6} 0.31±0.01
{C5, C6} 0.28±0.01
{C3, . . . , C6} 0.23±0.01
{C3, . . . , C10} 0.22±0.01

Table 3: Results for the PATTERN dataset show that homomorphism counts improve all models
except GatedGCN. We compare weighted accuracy of each model without any homomorphism
count (baseline) against the model augmented with the counts of the set F that showed best
performance (best F).

M���� + ���� F A������� �������� A������� ����

GAT{K3, K4, K5} 78.83 ± 0.60 85.50 ± 0.23
GCN{K3, K4, K5} 71.42 ± 1,38 82.49 ± 0.48
GraphSage {K3, K4, K5} 70.78 ± 0,19 85,85 ± 0.15
MoNet {K3, K4, K5} 85.90 ± 0,03 86.63 ± 0.03
GatedGCN {;} 86.15 ± 0.08 86.15 ± 0.08

predict whether a vertex belongs to a particular cluster or pattern, and all results are measured
using the accuracy of the classifier. Also here, our results show that homomorphism counts, this
times of cliques, tend to improve the accuracy of our models. Indeed, for the PATTERN dataset
we see an improvement in all models but GatedGCN (Table 3), and three models are improved
in the CLUSTER dataset (reported in the appendix). Once again, the best performer in this task
is a model that uses homomorphism counts. We remark that for cliques, homomorphism counts
coincide with subgraph isomorphism counts (up to a constant factor) so our extensions behave like
GSNs.

Link prediction In our final task we consider a single graph, COLLAB (Hu et al., 2020), with
over 235 000 vertices, containing information about the collaborators in an academic network, and
the task at hand is to predict future collaboration. The metric used in the benchmark is the Hits@50
evaluator (Hu et al., 2020). Here, positive collaborations are ranked among randomly sampled
negative collaborations, and the metric is the ratio of positive edges that are ranked at place 50 or
above. Once again, homomorphism counts of cliques improve the performance of all models, see
Table 4. An interesting observation is that this time the best set of features (cliques) does depend
on the model, although the best model uses all cliques again.

14

Zinc dataset

Barceló et al.: Graph neural networks with local graph parameters. (2021)

Take tree: add in each tree vertex
copies of rooted patterns

Choice of matching?
Graph Substructure Networks (GSNs): use counts. 𝗌𝗎𝖻𝗂𝗌𝗈

Expressiveness & generalisation: ZINC-12k

MPNN

9
[Bouritsas, F. et al., “Improving Graph Neural Network expressiveness via subgraph isomorphism counting”, 2022]

GSN(s)

cycles

trees
paths

Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)
Curticapean et al.: Homomorphisms are a good basis for counting small subgraphs. (2017)

Choice of matching?
Graph Substructure Networks (GSNs): use counts. 𝗌𝗎𝖻𝗂𝗌𝗈

Expressiveness & generalisation: ZINC-12k

MPNN

9
[Bouritsas, F. et al., “Improving Graph Neural Network expressiveness via subgraph isomorphism counting”, 2022]

GSN(s)

cycles

trees
paths

Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)
Curticapean et al.: Homomorphisms are a good basis for counting small subgraphs. (2017)

various ways, which may result in vastly di�erent problems: To state only some examples, we may be
interested in counting subgraph copies of a graph H, or induced subgraph copies of H, or homomorphisms
from H to G, and we can also consider settings where both pattern H and host graph G are colored and we
wish to count subgraphs of G that are color-preserving isomorphic to H.

It may seem daunting at first to try to deal with all di�erent types of pattern occurrences. Fortunately,
Lovász [42, 43] defined a framework that allows us to express virtually all kinds of pattern types in a unified
way. As it turns out, graph parameters such as the number of subgraph copies of H (induced or not) in a
host graph G, or the number of graph homomorphisms from H to G are actually just “linear combinations”
of each other in a well-defined sense. We build on this and define a general framework of so-called graph
motif parameters to capture counting linear combinations of small patterns, into which (induced) subgraph or
homomorphism numbers embed naturally as special cases.

In the remainder of the introduction, we first discuss algorithmic and complexity-theoretic aspects of
counting (induced) subgraphs and homomorphisms in §1.1–§1.3 and state the results we derive for these
special cases. In §1.4, we then give an introduction into the general framework of graph motif parameters,
our interpretation of Lovász’s unified framework, which also provides the main techniques for our proofs.
Finally, in §1.5 we give an exposition of our results for vertex-colored subgraphs.

1.1 Counting small subgraphs
For any fixed k-vertex pattern graph H, we can count all subgraph copies of H in an n-vertex host graph G
using brute-force for a running time of O(nk). While this running time is polynomial for any fixed H, it
quickly becomes infeasible as k grows. Fortunately enough, non-trivial improvements on the exponent are
known, albeit only for specific classes of patterns:

• We can count triangles in the same time O(nÊ) that it takes to multiply two (n ◊ n)-matrices [31]. It
is known that Ê < 2.373 holds [56, 26]. This approach can be generalized from triangles to k-cliques
with k œ N [47], for a running time of nÊk/3+O(1). Fast matrix multiplication is also used to improve on
exhaustive search for counting cycles of length at most seven [3] and various other problems [38, 23].

• For k-edge paths or generally any pattern of bounded pathwidth, a “meet in the middle” approach
yields nk/2+O(1) time algorithms [39, 4]. For a while, this approach appeared to be a barrier for faster
algorithms, until Björklund et al. [5] gave an algorithm for counting k-paths, matchings on k vertices,
and other k-vertex patterns of bounded pathwidth in time n0.455k+O(1).

• If vc(H) is the vertex-cover number of H, that is, the size of its smallest vertex-cover, then we can
count H-copies in time nvc(H)+O(1) [58] (also cf. [40, 17]). Essentially, one can exhaustively iterate over
the image of the minimum vertex-cover in G, which gives rise to nvc(G) choices; the rest of H can then
be embedded by dynamic programming. Note that vc(H) may be constant even for large graphs H,
e.g., if H is a star.

In this paper, we unify some of the algorithms above and generalize them to arbitrary subgraph patterns;
in many cases our algorithms are faster. For two graphs H and G, let #Sub(H æ G) be the number of
subgraphs of G that are isomorphic to H. Our main algorithmic result states that #Sub(H æ G) can be
determined in time O(nt+1), where t is the maximum treewidth (a very popular measure of tree-likeness)
among the homomorphic images of H. For our purposes, a homomorphic image of H is any simple graph that
can be obtained from H by possibly merging non-adjacent vertices. For instance, identifying the first and the
last vertex in the 4-path yields the 4-cycle , and further identifying two non-adjacent vertices in
the 4-cycle yields the 2-path . We define the spasm of H as the set of all homomorphic images of H,
that is, as the set of “all possible non-edge contractions” of H. As an example, for the 4-path, we have

Spasm
! "

=
Ó

, , , , , , ,
Ô

. (1)

Our main algorithmic result can then be stated as follows:

Theorem 1.1. Given as input a k-edge graph H and an n-vertex graph G, we can compute the number
#Sub(H æ G) in time kO(k)

· nt+1, where t is the maximum treewidth in the spasm of H.

2

Curticapean et al. (2017)

 count𝗌𝗎𝖻𝗂𝗌𝗈 count of spasm𝗁𝗈𝗆
Similar connection between for other matchings

𝒫 𝒫⋆
More hom counts
needed for same
subgraph iso :-(

Expressive power of GSN? Reduction to homomorphism counts

GSNs: Expressive power

 If for all pattern trees ,
then no SGN can distinguish from .

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫⋆− T
G H

Theorem

A direct characterisation in terms of is also possible.

The choice of patterns in is crucial

Simple patterns such as cycles and cliques work well.

𝗌𝗎𝖻𝗂𝗌𝗈

𝒫

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

Message passing

The larger and complex more complexity counting
 more expressive power

𝒫 ⇒
⇒

-MPNNs𝒫⋆

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

We
will come back

to this later

Message passing

The larger and complex more complexity counting
 more expressive power

𝒫 ⇒
⇒

-MPNNs𝒫⋆

Idea #2: (Random) Vertex identifiers

Message-Passing is only based on vertex features and adjacency
information.

Two different vertices with the same vertex features will be treated
the same (if they have the same colour in colour refinement).

What if we add vertex identifiers?

Vertex identifiers
Self identification: useful for cycle detection

??

In terms of colour refinement: every vertex has a unique colour

Logic comes to rescue
Two vertices in a graph have the same colour after t

iterations of colour refinement if and only if these
vertices satisfy the same unary formulas of C2

Theorem (Cai et al. 1992)

H ⊧ φG ⟺ H ≅ G

Recall:

If every vertex has a unique colour, then can
be identified with a formulaC2

We can express in a formula satisfyingC2 φG

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)

Logic comes to rescue

φG := ⋀
v∈VG

(∃xαv(x) ∧ ¬∃≥2xαv(x)) ∧ ⋀
v,w∈VG

∃x∃yβv,w(x, y)

αv(x) := ⋀
c id of v

𝖫𝖺𝖻c(x) ∧ ⋀
c′ is not id of v

¬𝖫𝖺𝖻c′ (x)

βv,w(x, y) := {αv(x) ∧ αw(y) ∧ E(x, y) (v, w) ∈ EG

αv(x) ∧ αw(y) ∧ ¬E(x, y) (v, w) ∉ ∈ EG

H ⊧ φG ⟺ H ≅ G

MPNNs+ and vertex ids
Recall:

Every formula is expressible by the class of MPNNs+C2

Theorem

We use MPNNs+ to express φG

φG := ⋀
v∈VG

(∃xαv(x) ∧ ¬∃≥2xαv(x)) ∧ ⋀
v,w∈VG

∃x∃yβv,w(x, y)

Idea:

Barceló et al.: The logical expressiveness of graph neural networks (2020)
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

MPNNs+ and vertex ids

𝒢
Isomorphic

graphs

𝕐

G1

G2

G3

G4

G5

0.3

20

Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

MPNNs+ and vertex ids

𝒢
Isomorphic

graphs

𝕐

G1

G2

G3

G4

G5

0.3

20

ψ := (⋁
i=1,2

φGi
) × 0.3 + (⋁

i=3,4,5

φGi
× 20

MPNN+

Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

MPNNs+ and vertex ids

𝒢
Isomorphic

graphs

𝕐

G1

G2

G3

G4

G5

0.3

20

ψ := (⋁
i=1,2

φGi
) × 0.3 + (⋁

i=3,4,5

φGi
× 20

MPNN+

Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Given graph HH

MPNNs+ and vertex ids

𝒢
Isomorphic

graphs

𝕐

G1

G2

G3

G4

G5

0.3

20

ψ := (⋁
i=1,2

φGi
) × 0.3 + (⋁

i=3,4,5

φGi
× 20

MPNN+

Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Given graph H

MPNN+ selects i s.t. H ⊧ φGi

H

MPNNs+ and vertex ids

𝒢
Isomorphic

graphs

𝕐

G1

G2

G3

G4

G5

0.3

20

ψ := (⋁
i=1,2

φGi
) × 0.3 + (⋁

i=3,4,5

φGi
× 20

MPNN+

Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)

Given graph H

MPNN+ selects i s.t. H ⊧ φGi

MPNN+ looks up value for Gi

H

rMPNNs+
How to choose identifiers? Common choice is at random!

With high probability random features are vertex identifiers

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Abboud et al. :The surprising power of graph neural networks with random node initialization. (2021)
Sato et al.: Random features strengthen graph neural networks (2021).

rMPNNs(+) approximate any invariant graph/
vertex embedding with high probability

Theorem

Invariance of computed embedding only in expectation!

Invariance by averaging
Add vertex identifiers

Take embedding method

All permutation with

Average/Aggregate :

G ↦ (G, 𝗂𝖽)

χ ∈ ℋ

π ∈ Sn n = |VG |

P = Sn

ξ(G) :=
1

|P | ∑
π∈P

ξ(π(G, 𝗂𝖽)) ξ(G) := max
π∈P

ξ(π(G, 𝗂𝖽))

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)
Murphy et al.: Relational pooling for graph representations. (2019)

Partial averaging, k-rMPNNs+

Let of size P ⊆ Sn |P | = k ξ(G) := max
π∈P

ξ(π(G, 𝗂𝖽))

k = 1 k − rMPNNs+ ∞ − rMPNNs+

𝒪(m) 𝒪(n!m)Complexity

Variance

Dasoulas et al.: Coloring graph neural networks for node disambiguation (2020)

Loose interpretation
of k-CLIP

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

Message passing

-MPNNs𝒫⋆

1-rMPNN+ k-rMPNN+ ∞ − rMPNN+
randomness clouds

not invariant

Idea #3: Use global information

Extract global graph information and use it as positional encodings
of vertices

 Spectral information

Shortest paths (distance information)

Biconnectivity (connectivity information)

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)
Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
Zhang et al.: Rethinking the expressive power of gnns via graph biconnectivity (2023)] 2

Spectral graph theory
Eigenvalues/vector:

For adjacency matrices: Eigenvalues and eigenvectors of Laplacian

M ⋅ v = λv

LG = DG − AG

= −

LG AGDGG

Images: Wikipedia

Laplacian eigenvalues and vectors contain connectivity information

multiplicity 1st eigenvalue connected components. ∼

Spectral MPNNs

Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors �i viewed as vectors
positionned on the axis of frequencies (eigenvalues).

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [16]
and the heat diffusion [6].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [9], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the Laplacian G and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, �̂i and �̂i are
the i-th eigenvectors and eigenvalues of the symmetric Laplacian D

�1
2 LD

�1
2 , and D is the degree

matrix, and �̂i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

�1
2

j2

X

i>0

(�̂i,j1�̂i,j2)
2

�̂i

(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [6, 10]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [28]. Here we use the eigenfunctions of the regular Laplacian L.

d2
D
(j1, j2) =

X

k>0

e�2t�i(�i,j1 � �i,j2)
2 , d2

B
(j1, j2) =

X

i>0

(�i,j1 � �i,j2)
2

�2
i

(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing
eigenvectors and their corresponding eigenvalues when supplying information about relative positions
in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic
interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,
there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily
weighted when determining distances between nodes.

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [23], with the same questions also applying to geometric objects [12] and 3D
molecules [33]. Various success was found with the eigenfunctions being used for partial functional
correspondence [32], algorithmic understanding geometries [26], and style correspondence [12].
Examples of eigenvectors for molecular graphs are presented in Figure 3.

Figure 3: Examples of eigenvalues �i and eigenvectors �i for molecular graphs. The low-frequency
eigenvectors �1,�2 are spread accross the graph, while higher frequencies, such as �14,�15 for the
left molecule or �10,�11 for the right molecule, often resonate in local structures.

4

Figure 2: a) Standard view of the eigenvectors as a matrix. b) Eigenvectors �i viewed as vectors
positionned on the axis of frequencies (eigenvalues).

the Laplacian is a fundamental operator in physics and is notably used in Maxwell’s equations [16]
and the heat diffusion [6].

In electromagnetic theory, the (pseudo)inverse of the Laplacian, known in mathematics as the Green’s
function of the Laplacian [9], represents the electrostatic potential of a given charge. In a graph, the
same concept uses the pseudo-inverse of the Laplacian G and can be computed by its eigenfunctions.
See equation 1 , where G(j1, j2) is the electric potential between nodes j1 and j2, �̂i and �̂i are
the i-th eigenvectors and eigenvalues of the symmetric Laplacian D

�1
2 LD

�1
2 , and D is the degree

matrix, and �̂i,j the j-th row of the vector.

G(j1, j2) = d
1
2
j1
d

�1
2

j2

X

i>0

(�̂i,j1�̂i,j2)
2

�̂i

(1)

Further, the original solution of the heat equation given by Fourier relied on a sum of sines/cosines
known as a Fourier series [7]. As eigenvectors of the Laplacian are the analogue of these functions in
graphs, we find similar solutions. Knowing that heat kernels are correlated to random walks [6, 4],
we use the interaction between two heat kernels to define in equation 2 the diffusion distance dD
between nodes j1, j2 [6, 10]. Similarly, the biharmonic distance dB was proposed as a better measure
of distances [28]. Here we use the eigenfunctions of the regular Laplacian L.

d2
D
(j1, j2) =

X

k>0

e�2t�i(�i,j1 � �i,j2)
2 , d2

B
(j1, j2) =

X

i>0

(�i,j1 � �i,j2)
2

�2
i

(2)

There are a few things to note from these equations. Firstly, they highlight the importance of pairing
eigenvectors and their corresponding eigenvalues when supplying information about relative positions
in a graph. Secondly, we notice that the product of eigenvectors is proportional to the electrostatic
interaction, while the subtraction is proportional to the diffusion and biharmonic distances. Lastly,
there is a consistent pattern across all 3 equations: smaller frequencies/eigenvalues are more heavily
weighted when determining distances between nodes.

2.1.3 Hearing the shape of a graph and its sub-structures

Another well-known property of eigenvalues is how they can be used to discriminate between different
graph structures and sub-structures, as they can be interpreted as the frequencies of resonance
of the graph. This led to the famous question about whether we can hear the shape of a drum
from its eigenvalues [23], with the same questions also applying to geometric objects [12] and 3D
molecules [33]. Various success was found with the eigenfunctions being used for partial functional
correspondence [32], algorithmic understanding geometries [26], and style correspondence [12].
Examples of eigenvectors for molecular graphs are presented in Figure 3.

Figure 3: Examples of eigenvalues �i and eigenvectors �i for molecular graphs. The low-frequency
eigenvectors �1,�2 are spread accross the graph, while higher frequencies, such as �14,�15 for the
left molecule or �10,�11 for the right molecule, often resonate in local structures.

4

Add eigenvectors as vertex features

Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)

MPNNs+eig

ξ(0)(G, v) := Hot-one encoding of label of vertex v + (𝖾𝗂𝗀1(v), …, 𝖾𝗂𝗀n(v))
ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), ξ(0), (𝖾𝗂𝗀1(u), …, 𝖾𝗂𝗀n(u)) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

SpMPNNs

Add Laplacian eigenvectors (spectrum) as features.

Ambiguity in eigenvector selection

Not permutation invariant.
Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)

eig=eigenvalue+eigenvectors

MPNNs+eig

ξ(0)(G, v) := Hot-one encoding of label of vertex v + (𝖾𝗂𝗀1(v), …, 𝖾𝗂𝗀n(v))
ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), ξ(0), (𝖾𝗂𝗀1(u), …, 𝖾𝗂𝗀n(u)) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

SpMPNNs

Add Laplacian eigenvectors (spectrum) as features.

Ambiguity in eigenvector selection

Not permutation invariant.
Kreuzer et al.: Rethinking graph transformers by spectral attention (2021)
Ying et al.: Do transformers really perform bad for graph representation (2021)

eig=eigenvalue+eigenvectors

:-(

Expressive poser of MPNNs+eig
Are as powerful as MPNNs with revised vertex labels

If eigenvectors assign unique vertex labels

See MPNNs + vertex ids

High expressive power

Difficult to analyse.

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Cvetković et al.: Eigenspaces of graphs (1997)
M. Fürer: On the power of combinatorial and spectral invariants (2010)

A = ∑
λ

λPλ Pλ =
pλ

11 pλ
12 … pλ

1n
⋮ ⋮ ⋱ ⋮

pλ
n1 pλ

n2 … pλ
nn

Spectral invariant

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Cvetković et al.: Eigenspaces of graphs (1997)
M. Fürer: On the power of combinatorial and spectral invariants (2010)

A = ∑
λ

λPλ Pλ =
pλ

11 pλ
12 … pλ

1n
⋮ ⋮ ⋱ ⋮

pλ
n1 pλ

n2 … pλ
nn

Multiset

Spectral invariant

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Cvetković et al.: Eigenspaces of graphs (1997)
M. Fürer: On the power of combinatorial and spectral invariants (2010)

A = ∑
λ

λPλ Pλ =
pλ

11 pλ
12 … pλ

1n
⋮ ⋮ ⋱ ⋮

pλ
n1 pλ

n2 … pλ
nn

Multiset

Spectral invariant

Number of length 3, 4, or 5 cycles, whether a graph is connected
and the number of length k closed walks from any vertex to itself

Graph properties

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Cvetković et al.: Eigenspaces of graphs (1997)
M. Fürer: On the power of combinatorial and spectral invariants (2010)

A = ∑
λ

λPλ Pλ =
pλ

11 pλ
12 … pλ

1n
⋮ ⋮ ⋱ ⋮

pλ
n1 pλ

n2 … pλ
nn

Multiset

Spectral invariant

Number of length 3, 4, or 5 cycles, whether a graph is connected
and the number of length k closed walks from any vertex to itself

Graph properties

Beyond 1-WL/Colour Refinement

SpecMPNN

specMPNN bounded in power by (1,1)-WL and strictly lower than 2-WL
Theorem (Seppelt and Rattan (2023)

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
G. Rattan and T. Seppelt: Weisfeiler-Leman and Graph Spectra (2023)

Variation used in Signet and BasisNet

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Can be using combination with any MPNN

2-WL bound

SpecMPNN

specMPNN bounded in power by (1,1)-WL and strictly lower than 2-WL
Theorem (Seppelt and Rattan (2023)

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
G. Rattan and T. Seppelt: Weisfeiler-Leman and Graph Spectra (2023)

Variation used in Signet and BasisNet

Spectral invariant

v ↦ 𝗌𝗉𝖾𝖼𝗂𝗇𝗏(v) := (λ, pλ
vv, {{pλ

vu ∣ u ∈ VG}})λ∈Λ

Can be using combination with any MPNN

2-WL bound

We discuss these WL’s later

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

Message passing

-MPNNs𝒫⋆

1-rMPNN+ k-rMPNN+ ∞ − rMPNN+
randomness clouds

MPNNs+eig
(1,1)-WL

specMPNNs

2-WL

not invariant

Signnet?

Signnet

Questions?

Subgraph GNNs
Turning one graph into many

General idea
Colour refinement equivalent graphs may contain colour refinement
inequivalent subgraphs.

View graphs as a collection of subgraphs then run MPNN

General idea
Colour refinement equivalent graphs may contain colour refinement
inequivalent subgraphs.

View graphs as a collection of subgraphs then run MPNN

General idea
Colour refinement equivalent graphs may contain colour refinement
inequivalent subgraphs.

View graphs as a collection of subgraphs then run MPNN

Colour refinement

Subgraph Vertex Aggregation↦

Subgraph Selection
- vertex deletion
- vertex marking
- edge deletion
- edge marking
- ego nets
- marked ego-nets

MPNN

MPNN

MPNN

MPNN

MPNN

MPNN

A
gg

re
ga

tio
n

Su
bg

ra
ph

Vertex Aggregation

Vertex Subgraph Aggregation↦

Subgraph Selection
- vertex deletion
- vertex marking
- edge deletion
- edge marking
- ego nets
- marked ego-nets

MPNN

MPNN

MPNN

MPNN

MPNN

MPNN

Vertex Aggregation

A
ggregation

Subgraph

The subgraph GNN “wave”

NGNN

ID-GNN
DropoutGNN

GNN-AK

DS-GNN

k-OSAN

All provably more expressive than MPNNs*

Reconstruction GNN

Vertex Subgraph Aggregation↦ Subgraph Vertex Aggregation↦

DSS-GNN

k-OSANT

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

The subgraph GNN “wave”

NGNN

ID-GNN
DropoutGNN

GNN-AK

DS-GNN

k-OSAN

All provably more expressive than MPNNs*

Reconstruction GNN

Vertex Subgraph Aggregation↦ Subgraph Vertex Aggregation↦

DSS-GNN

k-OSANT

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

Selection policies
- vertex deletion
- edge deletion
- ego nets
- marked ego-nets

- k-vertex deletion

DS-GNN

Rec-GNN

- ego-netsNGNN

- marked ego-netsID-GNNs

- ego-netsGNNs-AK

- size k subgraph markingk-OSAN

Popular/effective: ego-nets

General Subgraph MPNNs

We discuss an extension of MPNNs called Ordered Subgraph
Aggregation Networks

General enough to capture most existing methods*

Theoretical results on expressive power of OSANs translate directly
to these methods.

*Except for (possibly) Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Qian et al.: Ordered subgraph aggregation networks. (2022)

k-OSAN

ξ(0)(v, g) := 𝖴𝖯𝖣(type of g, v)

π(v, g) := 𝖴𝖯𝖣π(type of g, v)

v v v v v v

Only edges adjacent to v

v v v

Label them differently

Selection of k tuple of vertices g

Induced subgraph

Initialisation:

Learnable function (MLP)

Initial labels

Qian et al.: Ordered subgraph aggregation networks. (2022)

k-OSAN

ξ(t)(v, g) := 𝖴𝖯𝖣(t)(ξ(t)(v, g), 𝖠𝖦𝖦(t)({{ξ(t)(u, g) |u ∈ VG or NG(v)}})

v v v
MPNN

ξ(v) := 𝖠𝖦𝖦({{ξ(L)(v, g) ∣ π(v, g) ≠ 0}})

Iteration t: run MPNN for each g

Subgraph vertex Aggregation↦

v v v

Selection policy
Qian et al.: Ordered subgraph aggregation networks. (2022)

k-OSANT

ξ(t)(v, g) := 𝖴𝖯𝖣(t)(ξ(t)(v, g), 𝖠𝖦𝖦(t)({{ξ(t)(u, g) |u ∈ VG or NG(v)}})

v v v
MPNN

ξ(g) := 𝖠𝖦𝖦({{ξ(L)(v, g) ∣ π(v, g) ≠ 0,v ∈ VG}})

Iteration t: run MPNN for each g

Vertex Subgraph aggregation↦
v v v

Qian et al.: Ordered subgraph aggregation networks. (2022)

k-OSAN

• k-OSANs and k-OSANs encompass almost all subgraph
methods with selection policy involving k vertices.

• Strictly bounded in expressive power by (k+1)-WL
• Incomparable to k-WL.

t
Theorem (Qian et al. 2022)

if 2-WL cannot distinguish graphs, then neither can 1-OSANs
2-WL can distinguish more graphs than 1-OSANs
There exists graphs than can be distinguished by 1-OSANs but not by
MPNNs, and vice versa, there exists graphs that can be distinguished by
MPNNs but not by 1-OSAS

k=2

Qian et al.: Ordered subgraph aggregation networks. (2022)

Subgraph GNNs

Can always ensure to be strictly more expressive than MPNNs by
including original graph in batch.

Tractability only when easy subgraph policies are used, i.e., leading
to a small number (linear) of subgraphs.

Seems a good balance between complexity and expressiveness

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

Message passing

-MPNNs𝒫⋆

1-rMPNN+ k-rMPNN+ ∞ − rMPNN+
randomness clouds

MPNNs+eig
(1,1)-WL

specMPNNs

2-WL

not invariant

Signnet?

Signnet
DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK

k-WL

Characterisation ρ(k-OSAN)

To our knowledge no characterisation of the expressive power of
subgraph GNNs (and -OSANs in particular) in terms of
homomorphism counts is known.

An exception are the 1-OSANs.

k

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Characterisation ρ(1-OSAN)

Let be the class of all forests (collection of
trees)

Let be collection of graphs obtained by

Taking forest

Taking set of vertices

Contracting all vertices in to a single
vertex (removing loops and multi edges).

ℱ

ℱ+

F ∈ ℱ

∅ ≠ B ⊆ VF

B

Note: contains all trees, but also cycles etc.

Note: treewidth of elements in is at most two.

ℱ+

ℱ+

Characterisation ρ(1-OSAN)

 for all
if and only if

 no 1-OSAN can distinguish from .

𝗁𝗈𝗆(F, G) = 𝗁𝗈𝗆(F, H) F ∈ ℱ+

G H

Theorem (Seppelt & Rattan, 2023)

1-OSANs (and also ID-aware GNNs, …) have the ability to detect
cycles, etc.

Lim et al.: Sign and Basis Invariant Networks for Spectral Graph Representation Learning (2022)
G. Rattan and T. Seppelt: Weisfeiler-Leman and Graph Spectra (2023)

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+s

GIN
GCN

1-WL

-MPNNs𝒫
-SGNs𝒫

Message passing

-MPNNs𝒫⋆

1-rMPNN+ k-rMPNN+ ∞ − rMPNN+
randomness clouds

MPNNs+eig
(1,1)-WL

specMPNNs

2-WL

not invariant

Signnet?

Signnet
DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK

k-WL

Questions?

K-dimensional Weisfeiler-Leman
Boosting expressive power by higher-order message-passing

Motivation

We have seen that many graph embedding methods are bounded in
expressive power by 1-WL or colour refinement

To go beyond this, one can manually add more expressive features.

In the theoretical computer science community, however, higher-
order version of 1-WL have been studied for a long time.

Why not use these to build more powerful embedding methods?

More powerful heuristic

Apply heuristic on and : If Heuristic say
“no” then , otherwise we do not know.

G H
G ≇ H Are these

 graphs
isomorphic

?

k-WL
sayS
NO!

Colour refinement
G ≅ H?

No G ≇ H

More powerful heuristic

Apply heuristic on and : If Heuristic say
“no” then , otherwise we do not know.

G H
G ≇ H Are these

 graphs
isomorphic

?

k-WL
sayS
NO!

Colour refinement
G ≅ H?

No G ≇ H

1-WL No G ≇ H

More powerful heuristic

Apply heuristic on and : If Heuristic say
“no” then , otherwise we do not know.

G H
G ≇ H Are these

 graphs
isomorphic

?

k-WL
sayS
NO!

Colour refinement
G ≅ H?

No G ≇ H

1-WL No G ≇ H

2-WL No G ≇ H

More powerful heuristic

Apply heuristic on and : If Heuristic say
“no” then , otherwise we do not know.

G H
G ≇ H Are these

 graphs
isomorphic

?

k-WL
sayS
NO!

Colour refinement
G ≅ H?

No G ≇ H

1-WL No G ≇ H

……
2-WL No G ≇ H

K-dimensional Weisfeiler-Leman
Initial: Colour k-tuples of vertices according to label, adjacency
and equality information.

 Same colour if same induced subgraph⇒

Neighbours: two k-tuples
and are i-neighbours if

 for all

v = (v1, …, vk)
w = (w1, …, wk)

vj = wj j ≠ i

Iteration: k-tuple colour depending on colours of i-neighbours.

K-dimensional Weisfeiler-Leman

𝗐𝗅(t+1)
k (G, v1, …, vk) := (𝗐𝗅(t)k (G, v1, …, vk), M(t)(G, v1, …, vk))
M(t)(G, v1, …, vk) := (𝗐𝗅(0)

k+1(v1, …, vk, w),

𝗐𝗅(t)k (w, v2, …, vk),
⋮

𝗐𝗅(t)k (v1, …, vk−1, w) ∣ w ∈ VG)
Graphs: Histogram of colours for all 𝗐𝗅(L)

k (G, v, …, v) v ∈ VG

Properties of k-WL

Graphs of size n: Isomorphism problem solved by n-WL

Large neighbourhoods (nk) and tuples :-(nk

ρ(∞-WL) ⊊ ⋯ ⊊ ρ(kWL) ⊊ ρ((k − 1)-WL) ⊊ ⋯ ⊊ ρ(1-WL)
Theorem (Cai et al. (1992)

Distinguishability of graphs by k-WL corresponds to
distinguishability by (k+1)-variable fragment of FO with

counting quantifier ()Ck+1

Theorem (Cai et al. (1992)

Strict increase
in

power!

Cai et al.: An optimal lower bound on the number of variables for graph identifications. (1992)
M. Grohe. The logic of graph neural networks (2021)

Characterisations of ρ(k-WL)
 for all trees

 if and only if
 colour refinement cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)Recall:

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

Characterisations of ρ(k-WL)
 for all trees

 if and only if
 colour refinement cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)Recall:

 for all graphs of tree width k
 if and only if

 k-WL cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)Now:

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

Characterisations of ρ(k-WL)
 for all trees

 if and only if
 colour refinement cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)Recall:

 for all graphs of tree width k
 if and only if

 k-WL cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)Now:

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

Measures “how
far from being a

tree”

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k-tree

k=2

Treewidth
A k-tree is a graph that can be obtained starting from a (k+1)-clique
and then iteratively adding a vertex connected to a k-clique

A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k-tree

k=2

Trees=Treewidth 1

Treewidth

Alternative definition in terms of tree decomposition

If and neighbours then there is “bag” containing them both.

All bags containing a vertex from a connected subtree.

Graph has treewidth k if it has a tree decomposition with bags of size k+1.

u v

v

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

 Bag

Treewidth
A

B
D

E HF

C

G

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

Treewidth
A

B
D

E HF

C

G

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

Bag size 3 Treewidth 2

Treewidth
A

B
D

E HF

C

G

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

A

B
D

E HF

C

G

Bag size 3 Treewidth 2

Treewidth
A

B
D

E HF

C

G

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

A

B
D

E HF

C

G

Bag size 3 Treewidth 2

3-tree

Treewidth
A

B
D

E HF

C

G

C,D,F

B,C,F D,F,G

A,B,C B,E,F G,H

A

B
D

E HF

C

G

Question:
• tw(cycle of length k)?
• tw(k-clique)?

Bag size 3 Treewidth 2

3-tree

Back to -MPNNs and -GSNs𝒫 𝒫

Back to -MPNNs and -GSNs𝒫 𝒫

ξ(0)(G, v) := Hot-one encoding of label of vertex v + 𝗁𝗈𝗆(Pr, Gv), …, 𝗁𝗈𝗆(Pr
ℓ, Gv)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), 𝗁𝗈𝗆(Pr, Gu), …, 𝗁𝗈𝗆(Pr
ℓ, Gu) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

-MPNNs𝒫

Back to -MPNNs and -GSNs𝒫 𝒫

ξ(0)(G, v) := Hot-one encoding of label of vertex v + 𝗁𝗈𝗆(Pr, Gv), …, 𝗁𝗈𝗆(Pr
ℓ, Gv)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), 𝗁𝗈𝗆(Pr, Gu), …, 𝗁𝗈𝗆(Pr
ℓ, Gu) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

-MPNNs𝒫

 for all pattern trees , if
and only no -MPNN can distinguish from .
𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T

𝒫 G H

Theorem

Back to -MPNNs and -GSNs𝒫 𝒫

ξ(0)(G, v) := Hot-one encoding of label of vertex v + 𝗁𝗈𝗆(Pr, Gv), …, 𝗁𝗈𝗆(Pr
ℓ, Gv)

ξ(t)(G, v) := 𝖴𝗉𝖽(t)(ξ(t−1)(G, v), 𝖠𝗀𝗀(t)({{ξ(t−1)(G, v), ξ(t)(G, u), 𝗁𝗈𝗆(Pr, Gu), …, 𝗁𝗈𝗆(Pr
ℓ, Gu) ∣ u ∈ NG(v)}}))

ρ(G) := 𝖱𝖾𝖺𝖽𝗈𝗎𝗍({{ξ(L)(G, v) ∣ v ∈ VG}})

-MPNNs𝒫

 for all pattern trees , if
and only no -MPNN can distinguish from .
𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) 𝒫− T

𝒫 G H

Theorem

 If the patterns in have maximal tree width
then the power of -MPPNs is bounded by k-WL.

Similar result for -GSN using -MPNNs.

P 𝒫 k
𝒫

𝒫 𝒫⋆

Theorem

𝒫k max tree width k

𝒫⋆
k max tree width k

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+

GIN
GCN

1-WL

1-rMPNN+ k-rMPNN+
∞ − rMPNN+

SpMPNNs(1,1)-WL

SpMPNNs(inv)

2-WL

k-WL

DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK
Reconstruction GNN

-MPNNs𝒫2

-SGNs𝒫⋆
2

 -MPNNs
 -SGNs

𝒫⋆
∞

𝒫∞

𝒫⋆
k

𝒫k

 -MPNNs
 -SGNs

Message passing

randomness clouds

Higher-order GNNs
Neural implementations of k-WL

Idea: higher-order GNNs

1-WL MPNNs

 for all graphs of tree width k
 if and only if

 k-WL cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

Idea: higher-order GNNs

1-WL MPNNs

k-WL k-MPNNs

 for all graphs of tree width k
 if and only if

 k-WL cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

Idea: higher-order GNNs

1-WL MPNNs

k-WL k-MPNNs

k-MPNNs will detect more graph
information

than MPNNs

 for all graphs of tree width k
 if and only if

 k-WL cannot tell apart from

𝗁𝗈𝗆(T, G) = 𝗁𝗈𝗆(T, H) T

G H

Theorem (Dell et al. 2018, …)

Z. Dvorák: On recognizing graphs by numbers of homomorphisms (2010)
Dell et al. Lovász meets Weisfeiler and Leman (2018)

k-Folklore GNNs (k-FGNs)

ξ(t)(G, v1, …, vk) := 𝖬𝖫𝖯(t)
1 (∑

u∈VG

k

∏
i=1

𝖬𝖫𝖯(t)
2 (ξ(t−1)(G, v1, …, vi−1, u, vi+1, …, vk)))

Uses multiplicationGlobal aggregation-vertex embeddingk

Expressive power?

Maron et al.: Provably powerful graph networks (2019)
W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph neural networks (2021)

k-Folklore GNNs (k-FGNs)

ξ(t)(G, v1, …, vk) := 𝖬𝖫𝖯(t)
1 (∑

u∈VG

k

∏
i=1

𝖬𝖫𝖯(t)
2 (ξ(t−1)(G, v1, …, vi−1, u, vi+1, …, vk)))

ρ(k − FGNN) = ρ(k-WL)
Theorem (Maron et al. 2019), Azizian and Lelarge 2021)

Uses multiplicationGlobal aggregation-vertex embeddingk

Expressive power?

Maron et al.: Provably powerful graph networks (2019)
W. Azizian and M. Lelarge. Characterizing the expressive power of invariant and equivariant graph neural networks (2021)

k-GNNs

ξ(t)(G, v1, …, vk) := σ(ξ(t−1)(G, v1, …, vk)W(t)
1 + (

k

∑
i=1

∑
u∈VG

ξ(t)(G, v1, …, vi−1, u, vi+1, …, vk))W(t)
2)

Morris et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

Global aggregation

A simpler architecture:

Expressive power?

k-GNNs

ξ(t)(G, v1, …, vk) := σ(ξ(t−1)(G, v1, …, vk)W(t)
1 + (

k

∑
i=1

∑
u∈VG

ξ(t)(G, v1, …, vi−1, u, vi+1, …, vk))W(t)
2)

ρ(k − GNN) = ρ(k-WL)
Theorem (Morris et al. 2019)

Morris et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. (2019)

Global aggregation

A simpler architecture:

Expressive power?

Linear equivariant layers

L : ℝnk → ℝnℓ s.t. L(PtXP) = PtL(X)P for all permutation matrices P

Maron et al: Invariant and equivariant graph networks (2019)

One can find a basis Bγ s.t. L = ∑
γ

aγBγ

Published as a conference paper at ICLR 2019

Figure 1: The full basis for equivariant linear layers for edge-value data A 2 Rn⇥n, for n = 5.
The purely linear 15 basis elements, Bµ, are represented by matrices n2 ⇥ n2, and the 2 bias basis
elements (right), C�, by matrices n⇥ n, see equation 9.

every permutation matrix P , the function f is equivariant if it satisfies f(P T
AP) = P

T f(A)P .
To define invariance and equivariance for functions acting on general tensors A 2 Rnk we use the
reordering operator: P ? A is defined to be the tensor that results from renumbering the nodes V
according to the permutation defined by P . Invariance now reads as f(P ? A) = f(A); while
equivariance means f(P ? A) = P ? f(A). Note that the latter equivariance definition also holds
for functions between different order tensors, f : Rnk ! Rnl .

Following the standard paradigm of neural-networks where a network f is defined by alternating
compositions of linear layers and non-linear activations, we set as a goal to characterize all linear

invariant and equivariant layers. The case of node-value input A = a 2 Rn was treated in the
pioneering works of Zaheer et al. (2017); Qi et al. (2017). These works characterize all linear
permutation invariant and equivariant operators acting on node-value (i.e., first order) tensors, Rn.
In particular it it shown that the linear space of invariant linear operators L : Rn ! R is of dimension
one, containing essentially only the sum operator, L(a) = ↵1T

a. The space of equivariant linear
operators L : Rn ! Rn is of dimension two, L(a) =

⇥
↵I + �(11T � I)

⇤
a.

The general equivariant tensor case was partially treated in Kondor et al. (2018) where the authors
make the observation that the set of standard tensor operators: product, element-wise product, sum-
mation, and contraction are all equivariant, and due to linearity the same applies to their linear
combinations. However, these do not exhaust nor provide a full and complete basis for all possible
tensor equivariant linear layers.

In this paper we provide a full characterization of permutation invari-
ant and equivariant linear layers for general tensor input and output
data. We show that the space of invariant linear layers L : Rnk ! R is
of dimension b(k), where b(k) is the k-th Bell number. The k-th Bell
number is the number of possible partitions of a set of size k; see inset
for the case k = 3. Furthermore, the space of equivariant linear layers
L : Rnk ! Rnl is of dimension b(k + l). Remarkably, this dimension is independent of the size
n of the node set V. This allows applying the same network on graphs of different sizes. For both
types of layers we provide a general formula for an orthogonal basis that can be readily used to build
linear invariant or equivariant layers with maximal expressive power. Going back to the example
of a graph represented by an adjacency matrix A 2 Rn⇥n we have k = 2 and the linear invariant
layers L : Rn⇥n ! R have dimension b(2) = 2, while linear equivariant layers L : Rn⇥n ! Rn⇥n

have dimension b(4) = 15. Figure 1 shows visualization of the basis to the linear equivariant layers
acting on edge-value data such as adjacency matrices.

In Hartford et al. (2018) the authors provide an impressive generalization of the case of node-value
data to several node sets, V1,V2, . . . ,Vm of sizes n1, n2, . . . , nm. Their goal is to learn interactions
across sets. That is, an input data point is a tensor A 2 Rn1⇥n2⇥···⇥nm that assigns a value to
each element in the cartesian product V1 ⇥ V2 ⇥ · · · ⇥ Vm. Renumbering the nodes in each node
set using permutation matrices P1, . . . ,Pm (resp.) results in a new tensor we denote by P1:m ? A.
Order invariance means f(P1:m ?A) = f(A) and order equivariance is f(P1:m ?A) = P1:m ?f(A).
Hartford et al. (2018) introduce bases for linear invariant and equivariant layers. Although the layers
in Hartford et al. (2018) satisfy the order invariance and equivariance, they do not exhaust all possible
such layers in case some node sets coincide. For example, if V1 = V2 they have 4 independent
learnable parameters where our model has the maximal number of 15 parameters.

Our analysis allows generalizing the multi-node set case to arbitrary tensor data over V1 ⇥ V2 ⇥
· · · ⇥ Vm. Namely, for data points in the form of a tensor A 2 Rn

k1
1 ⇥n

k2
2 ⇥···⇥n

km
m . The tensor

A attaches a value to every element of the Cartesian product Vk1
1 ⇥ · · · ⇥ Vk2

2 , that is, k1-tuple
from V1, k2-tuple from V2 and so forth. We show that the linear space of invariant linear layers
L : Rn

k1
1 ⇥n

k2
2 ⇥···⇥n

km
m ! R is of dimension

Qm
i=1 b(ki), while the equivariant linear layers L :

2

n = 16,k = ℓ = 2

Build higher-order GNN using linear equivariant layers

k-IGNs

ξ(t)(G, v1, …, vk) := σ(∑γ ∑w1,…,wk
BγW(t)

γ ξ(t−1)(G, w1, …, wk) + ∑μ BμW(t)
μ)

ρ(k − IGN) = ρ((k − 1)-WL)

Theorem (Maron et al. 2019, G. and Reutter 2022)

Equality types linear equivariant basis∼

Maron et al.: Provably powerful graph networks (2019)
G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+

GIN
GCN

1-WL

1-rMPNN+ k-rMPNN+
∞ − rMPNN+

SpMPNNs(1,1)-WL

SpMPNNs(inv)

2-WL

k-WL

DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK
Reconstruction GNN

-MPNNs𝒫2

-SGNs𝒫⋆
2

 -MPNNs
 -SGNs

𝒫⋆
∞

𝒫∞

𝒫⋆
k

𝒫k

 -MPNNs
 -SGNs

Message passing

k-IGNs
k-GNNs k-FGNNs

(K-1)IGNs

(k+1)-GNNs

2-IGNs
2-GNNs

randomness clouds

Higher-order methods
Do not scale well, but are expressive

Do not leverage sparsity of graphs

Powerful, but leads to overfitting

There are several attempts to make them scalable without
sacrificing power.

Morris et al.: Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings (2020)
Morris et al.: SpeqNets: Sparsity-aware Permutation-equivariant Graph Networks. (2022)

“Local” k-GNNs: k-LGNNs
A

B
C

1

2 3

(A,B)

(A,A)
(A,B)
(A,C)
(A,1)
(A,2)
(A,3)
(A,B)
(B,B)
(C,B)
(1,B)
(2,B)
(3,B)

Neighbours

Morris et al.: Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings (2020)

“Local” k-GNNs: k-LGNNs
A

B
C

1

2 3

(A,B)

(A,A)
(A,B)
(A,C)
(A,1)
(A,2)
(A,3)
(A,B)
(B,B)
(C,B)
(1,B)
(2,B)
(3,B)

Neighbours

Only when edge

Morris et al.: Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings (2020)

“Local” k-GNNs: k-LGNNs
A

B
C

1

2 3

(A,B)

(A,A)
(A,B)
(A,C)
(A,1)
(A,2)
(A,3)
(A,B)
(B,B)
(C,B)
(1,B)
(2,B)
(3,B)

Neighbours

Only when edge (A,A)
(A,B)
(A,C)
(A,1)
(A,2)
(A,3)
(A,B)
(B,B)
(C,B)
(1,B)
(2,B)
(3,B)

With B

With A

Morris et al.: Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings (2020)

k-LGNNs

ξ(t)(G, v1, …, vk) := σ(ξ(t−1)(G, v1, …, vk)W(t)
1 + (

k

∑
i=1

∑
(u,vi)∈EG

ξ(t)(G, v1, …, vi−1, u, vi+1, …, vk))W(t)
2)

ρ((k + 1)-WL) ⊊ ρ(k − LGNN) ⊊ ρ(k-WL)
Theorem (Morris et al. (2020), G and Reutter (2022)_

Can detect distance two (k+1)-cliques

Morris et al.: Weisfeiler and Leman go sparse: Towards scalable higher-order graph embeddings (2020)
G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

ℋ
Complexity

Ex
pr

es
siv

en
es

s

MPNNs
Colour Refinement

MPNN+

GIN
GCN

1-WL

1-rMPNN+ k-rMPNN+
∞ − rMPNN+

SpMPNNs(1,1)-WL

SpMPNNs(inv)

2-WL

k-WL

DS-GNN/1-OSAN/1-OSANt
DSS-GNN

(K-1)-OSAN

NGNN
ID-GNN
DropoutGNN

GNN-AK
Reconstruction GNN

-MPNNs𝒫2

-SGNs𝒫⋆
2

 -MPNNs
 -SGNs

𝒫⋆
∞

𝒫∞

𝒫⋆
k

𝒫k

 -MPNNs
 -SGNs

Message passing

k-IGNs
k-GNNs k-FGNNs

(K-1)IGNs

(k+1)-GNNs

2-GNNs

k-LGNNs

2-LGNNs

randomness clouds

Let’ stop filling in the landscape :=
)

Conclusions
And look ahead

Semi-conclusion
Expressivity has been an important concept in graph learning since 2019

Has been pushing forward the area: different techniques to boost power:

k-WL, feature augmentation, subgraphs, structured modulated
message passing, ….

Expressive models juggle with

Complexity, overfitting, …

Semi-conclusion

When methods are shown to be powerful: existential proofs.

No reason that this power is met in practice.

Also, distinguishing power is necessary but not sufficient in
practice…

Semi-conclusion
Expressivity has been an important concept in graph learning since 2019

Has been pushing forward the area: different techniques to boost power:

k-WL, feature augmentation, subgraphs, structured modulated
message passing, ….

Expressive models juggle with

Complexity, overfitting, …

What to use?

Graphs are small

Efficiency not
essential

Expressivity
guarantee needed

Large training
datasets

Invariance not
importnat

Preprocessing ok

Small graphs

Good
compromise in
general

Subgraph Feature Augmentation Higher-order

A lot of recent
(2023 progress)

WL hierarchy needs
better reconciliation
with practice

Hom count
characterisations

Relational

Road ahead

Optimisation and
training
unexplored

Generalisation
properties

Sample
efficiency?

Expressiveness Connection with Learning??

Gary et al. :Generalization and Representational Limits of Graph Neural Networks (2020)
Morris et al: WL meet VC (2023)

Bounding embedding methods
An “easy” way to analyse the power of graph embeddings

x2/2pi

How to get k-WL bounds?

Without knowing k-WL? :-)

Higher-order MPNNs

They are a generalisation of classical MPNNs.

They provide a flexible mechanism to describe various graph
learning architectures.

Easy way to obtain upper bounds on the
expressive power of graph learning architectures.

G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Higher-order MPNNs
Higher-order MPNNs are defined inductively and declaratively.

We provide syntax and semantics.

With each higher-order MPNN we associate:

A dimension describing the output feature dimension; and

A set of free variables and we write with .

φ

φ(x) x = {x1, …, xℓ}

Higher-order MPNNs

ξφ : 𝒢 → (𝒱ℓ → ℝd) : (G, v1, …, vℓ) ↦ ℝd

 of dimension and free variables φ(x) d x = {x1, …, xℓ}

Higher-order MPNN

Higher-order embedding

Syntax

Semantics

Atomic higher-order MPNNs: Syntax

Label: of dim 1 and free var

Edge: of dim1, free vars

Equality: of dim 1, free vars

xi

xi, xj

xi, xj

φ(xi, xj) := E(xi, xj)

φ(xi) := Labj(xi)

φ(xi, xj) := 1[xi = xj]

Higher-order MPNNs: Atomic

ξφ : (v1, v2, …, vp) ↦ {1 (vi, vj) ∈ E
0 otherwise

ξφ : (v1, v2, …, vp) ↦ jth feature of vi

ξφ : (v1, v2, …, vp) ↦ {1 vi = vj

0 otherwise

SemanticsAtomic higher-order MPNNs: Syntax

Label: of dim 1 and free var

Edge: of dim1, free vars

Equality: of dim 1, free vars

xi

xi, xj

xi, xj

φ(xi, xj) := E(xi, xj)

φ(xi) := Labj(xi)

φ(xi, xj) := 1[xi = xj]

Higher-order MPNNs: Atomic

0 1 1 1 1 0
1 0 1 1 0 0
1 1 0 1 0 1
1 1 1 0 1 0
1 0 0 1 0 1
0 0 1 0 1 0

φ(v1, v2) := E(x1, x2)

ξφ : (v1, v2) ↦ {1 (v1, v2) is a edge
0 otherwise

Higher-order MPNNs: Atomic

Let be higher-order MPNNs of dim and free vars
Let be a function. Then,

 is a higher-order MPNN of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

Higher-order MPNNs: Function Application

Let be higher-order MPNNs of dim and free vars
Let be a function. Then,

 is a higher-order MPNN of dim and free vars

φ1(x1), …, φℓ(x1) d1, …, dℓ x1, …, xℓ
F : ℝd1+⋯+dℓ → ℝd

d x = x1 ∪ ⋯ ∪ xℓ

Function application: Syntax

φ(x) = F(φ1, …, φℓ)

Higher-order MPNNs: Function Application

Semantics

ξφ : (v1, …, vp) ↦ F(ξφ1
(v1, …, vp), …, ξφℓ

(v1, …, vp)) Linear algebra
Activation functions

Anything you want…

Higher-order MPNNs: Aggregation
Let and be higher-order MPNNs of dim and and free vars

 Let be a function mapping bags of vectors in to a vector in . Then,

 is a higher-order MPNN of dim and free vars

φ1(x1, x2) φ2(x1, x2) d1 d2
x1, x2 . Θ ℝd1 ℝd

d x1

φ(x1) = 𝖺𝗀𝗀Θ
x2

[φ1 ∣ φ2]

Aggregation: Syntax

Higher-order MPNNs: Aggregation
Let and be higher-order MPNNs of dim and and free vars

 Let be a function mapping bags of vectors in to a vector in . Then,

 is a higher-order MPNN of dim and free vars

φ1(x1, x2) φ2(x1, x2) d1 d2
x1, x2 . Θ ℝd1 ℝd

d x1

φ(x1) = 𝖺𝗀𝗀Θ
x2

[φ1 ∣ φ2]

Aggregation: Syntax

ξφ : v ↦ θ({{ξφ1
(v, w) ∣ ξφ2

(v, w) ≠ 0}})
Semantics

Higher-order MPNNs: Aggregation

 is e.g., summation and and
We can count degrees as follows:
Θ φ2(x, y) := E(x, y) φ1(x, y) := 1[y = y]

φ(x) = 𝖺𝗀𝗀𝗌𝗎𝗆
y [1[y = y] ∣ E(x, y)]

Expressive Power of k-MPNNs
 A higher-order MPNN is called a k-MPNN if it uses at most k variables.
 k-MPNNs=class of k-MPNN

G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Expressive Power of k-MPNNs
 A higher-order MPNN is called a k-MPNN if it uses at most k variables.
 k-MPNNs=class of k-MPNN

ρ(k − MPNNs) = ρ(k-WL)
Theorem (G. And Reutter 2022)

G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

Expressive Power of k-MPNNs
 A higher-order MPNN is called a k-MPNN if it uses at most k variables.
 k-MPNNs=class of k-MPNN

Just write your architecture as higher-order MPNNs
 Count variables

Take away: Bounding architectures is easy!!

ρ(k − MPNNs) = ρ(k-WL)
Theorem (G. And Reutter 2022)

G. and J. Reutter: Expressiveness and approximation properties of graph neural networks (2022)

We end with some examples …

MPNNs

We define
Then for , we get

φ(0)(x1) := 1[x1 = x1]
t > 0

φ(t)(x1) := 𝖴𝗉𝖽(t)(φ(t−1)(x1), 𝖺𝗀𝗀Θ(t)

x2
[φ(t−1)(x2) |E(x1, x2)])

For readout layer, we get

φ := 𝖺𝗀𝗀Θ
x1

[φ(L)(x1) |1[x1 = x1]])

2 variables 1-WL↦

MPNNs: Gilmer et al.: Neural message passing for quantum chemistry (2017)

Graph Convolutional Networks

Use as propagation matrix

 with

We can use in
the MPNN expressions from the previous slide.

D−1/2(I + A)D−1/2

φ(x1) := F(𝖺𝗀𝗀𝗌𝗎𝗆
x2

[1[x2 = x2] |E(x1, x)]) F : ℝ → ℝ : x ↦
1

1 + x

ψ(x1, x2) := × (× (φ(x1), + (1[x1 = x2], E(x1, x2))), φ(x2))

2 variables 1-WL↦

GCN: Kipf and Welling: Semi-supervised classification with graph convolutional networks (2017)

Simplified GNNs

Uses path information in a single layer.

For and for initial feature:

ApF(0)

p = 3 φ(0)(x1)

ψ(x1) := 𝖺𝗀𝗀𝗌𝗎𝗆
x2 [𝖺𝗀𝗀𝗌𝗎𝗆

x1 [𝖺𝗀𝗀𝗌𝗎𝗆
x2

[φ(0)(x2) |E(x1, x2)] |E(x2, x1)] |E(x1, x2)]

Wu et al. :Simplifying Graph Convolutional Networks (2019)

2 variables 1-WL↦

Subgraph count GNNs
Use count of subgraphs to augment MPNNs

homomorphism count for rooted motif ,

subgraph iso count for rooted motif

If motif has tree width k then can be computed using k+1 variables.

For example, can be expressed as

𝗁𝗈𝗆(Pr, Gv) P

𝗌𝗎𝖻(Pr, Gv) P

𝗁𝗈𝗆(Pr, Gv)

(G, v) ↦ 𝗁𝗈𝗆(,Gv)
φ(x1) := ∑x2

∑x3
E(x1, x2)E(x1, x3)E(x2, x3)(1[x1 = x1] − 1[x1 = x2])

(1[x1 = x1] − 1[x1 = x3])(1[x1 = x1] − 1[x2 = x3])

Bouritsas et al.: Improving graph neural network expressivity via subgraph isomorphism counting (2020)
Barceló et al.: Graph neural networks with local graph parameters. (2021)

k+1 variables k-WL↦

Subgraph GNNs: vertices

MPNN
Pool/aggregate

 φ(0)(x1, x2) := 1[x1 = x2]
φ(t)(x1, x2) := 𝖴𝗉𝖽(t)(φ(t−1)(x1, x2), 𝖺𝗀𝗀Θ

x3
[φ(t−1)(x1, x3) |E(x2, x3])

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

3 variables 2-WL↦

MPNN MPNN MPNN MPNN MPNN

Subgraph GNNs: edges

MPNN
Pool/aggregate

Bevilacqua et al: Equivariant subgraph aggregation network (2022)
Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNs by rethinking their symmetries (2022)
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

4 variables 3-WL↦

MPNN MPNN MPNN MPNN MPNN

φ(t)(x1, x2, x3) := 𝖴𝗉𝖽(t)(φ(t−1)(x1, x2, x3), 𝖺𝗀𝗀Θ
x4

[φ(t−1)(x1, x2, x4) |E(x3, x4])

Conclusion

Takes a bit of practice but easy to get bounds

Not guaranteed that these bounds are tight: depends on your
programming skills in order to reduce number of variables.

No lower bounds.

Please use it to get bounds!

And cite the ICLR paper :-)

