

The (expressive) power of graph learning Floris Geerts (University of Antwerp)

Course

* Is about recent advances in graph learning.
* With an emphasis on the expressive power of learning methods.
* Self-contained (too some extent).
* Mostly high-level, but also low-level, so basically all levels.
* Not all methods or related works are covered.
* Will not report experiments...

About the speaker

* Background in mathematics, database :. theory* and expressive power of query languages.
* Since 2018, expressive power of linear algebra.
* Natural move to the study of expressive power of graph neural networks.

Outline

* Graph learning and expressive power
* Message Passing Neural Networks
- Boosting power:
* Feature augmentation
* Subgraphs
* Higher-order message-passing
Ask Questions

Why learning on graphs?

Graphs are everywhere!

Graphs: One definition to rule them all

* Graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ with
* Vertex set V_{G}
* Edge set $E_{G} \subseteq V_{G}^{2}:=V_{G} \times V_{G}$
* Vertex labels: $L_{G}: V_{G} \rightarrow \Sigma$

Graphs: One definition to rule them all

* Graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ with
* Vertex set V_{G}
* Edge set $E_{G} \subseteq V_{G}^{2}:=V_{G} \times V_{G}$
*Vertex labels: $L_{G}: V_{G} \rightarrow \Sigma$
Vertex features \mathbb{R}^{d}

Adjacency matrix representation

* Graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ can also be represented by adjacency matrix A_{G} and feature matrix F_{G}
* Let $n=\left|V_{G}\right|$ be the number of vertices. Let $v, w \in[n]:=\{1, \ldots, n\}$.
adjacency matrix $\quad A_{G} \in \mathbb{R}^{n \times n}:(v, w) \mapsto \begin{cases}1 & (v, w) \in E_{G} \\ 0 & \text { otherwise }\end{cases}$
feature matrix $\quad F_{G} \in \mathbb{R}^{n \times d}: v \mapsto L_{G}(v)$
* Assumes an ordering on the vertices.

Graph learning

\mathbb{R}^{d}

Classical ML
$\mathscr{G}=$ all graphs
$\mathbb{Y}=$ output space

Graph learning

$$
\mathscr{G}=\text { all graphs }
$$

$$
\mathbb{Y}=\text { output space }
$$

Embeddings

$$
\begin{aligned}
\mathscr{G} & =\text { all graphs } \\
\mathscr{V} & =\text { all vertices } \\
\mathbb{Y} & =\text { output space }
\end{aligned}
$$

* Graph embedding: $\xi: \mathscr{G} \rightarrow \mathbb{Y}$
* Vertex embedding: $\xi: \mathscr{G} \rightarrow(\mathscr{V} \rightarrow \mathbb{Y})$
* p-Vertex embedding: $\xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{Y}\right)$

Graph embeddings

* Graph embedding: $\xi: \mathscr{G} \rightarrow \mathbb{V}$
* Graph classification/regression

Vertex embeddings

* Vertex embedding: $\xi: \mathscr{G} \rightarrow(\mathscr{V} \rightarrow \mathbb{Y})$
* Vertex classification/regression. For example, prediction of subject of papers.

p-Vertex embeddings

*p-Vertex embedding: $\xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{Y}\right)$

* For example, 2-vertex embeddings: link prediction

Graph learning tasks

Applications

* Vertex classification: categorise online user/items, location amino acids (protein folding, alpha fold)
* Link prediction: knowledge graph completion, recommender systems, drug side effect discovery
* Graph classification: molecule property, drug discovery
* Subgraph tasks: traffic prediction

Applications

* Vertex classifica categorise online user/items, location aming (protein folding, alpha fold) GRAPH
* Link, LEARNING HAS ph completion, recomm BECOME KEY o side effect discovery DATA
* Graph clas COMPONENT ecule property, drug discovery
* Subgrap sks: traffic r liction

Graph learning

* We want to learn an unknown embedding $\Xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{V}\right)$

Graph learning

* We want to learn an unknown embedding $\Xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{Y}\right)$

What does this mean???

Graph learning

* We want to learn an unknown embedding $\Xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{V}\right)$

What does this mean???

* The embedding Ξ is partially revealed by means of a training set

$$
\mathscr{T}:=\left\{\left(G_{1}, \mathbf{v}_{1}, y_{1}\right), \ldots,\left(G_{\ell}, \mathbf{v}_{\ell}, y_{\ell}\right)\right\} \subseteq \mathscr{G} \times \mathscr{V}^{p} \times \mathbb{V}
$$

Graph learning

* We want to learn an unknown embedding $\Xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{Y}\right)$

What does this mean???

* The embedding Ξ is partially revealed by means of a training set

$$
\begin{gathered}
\mathscr{T}:=\left\{\left(G_{1}, \mathbf{v}_{1}, y_{1}\right), \ldots,\left(G_{\ell}, \mathbf{v}_{\ell}, y_{\ell}\right)\right\} \subseteq \mathscr{G} \times \mathscr{V}^{p} \times \mathbb{Y} \\
\boldsymbol{\uparrow} \\
\Xi\left(G_{1}, \mathbf{v}_{1}\right) \quad \Xi\left(G_{\ell}, \mathbf{v}_{\ell}\right)
\end{gathered}
$$

Training sets

Graph classification

(cora, paper, topic)
Vertex classification

(social, p_{x}, p_{y}, yes $/$ no)
Link prediction

Graph learning: hypothesis class

* We want to find the best model consistent with training set \mathscr{T}

Graph learning: hypothesis class

* We want to find the best model consistent with training set \mathscr{T} \uparrow
What does this mean???

Graph learning: hypothesis class

* We want to find the best model consistent with training set \mathscr{T} \uparrow What does this mean???
- Models are selected from an hypothesis class \mathscr{H}
* In the graph setting \mathscr{H} consists of embeddings

Hypothesis classes

Hypothesis classes

\section*{MPNN
 GSN 2-IGN

\section*{PPGN

PPGN $\times 1000$

Graphormer GATs CayleyNet
CWN $\delta-k-$ GNNs GIN GCNs
ChebNet
k-IGNs
GraphSage
Dropout GNN
k-GNNs
\mathscr{H}

Explosion

Graph learning

Classical embedding methods depend on representation E.g., think of MLP on vector representation of flattened adjacency matrix
Invariant
Embedding method

$$
\mathscr{G}=\text { all graphs }
$$

$$
\mathbb{Y}=\text { output space }
$$

A desired property: Invariance

* Embeddings should be invariant, that is, independent of the chosen graph representation.
* Invariance is defined in terms of graph isomorphisms.

* The mapping π is a bijective vertex function satisfying $\left(v, v^{\prime}\right) \in E_{G} \Longleftrightarrow(\pi(v), \pi(w)) \in E_{H}$ also $\underline{L_{G}(v)=L_{H}(\pi(v)) \text { must hold. }}$

Invariant embeddings

for all π, G and $\mathbf{v} \in V_{G}^{p}: \xi(G, \mathbf{v})=\xi(\pi(G), \pi(\mathbf{v}))$

Isomorphism

$(1,4)$ and (B, C) have same embedding in \mathbb{Y}
We typically assume invariant embedding methods (unless said otherwise)

Graph learning: ERM

Best one! ξ

* Given training set \mathscr{T} and hypothesis class \mathscr{H}
* Empirical risk minimisation:

Find embedding ξ in \mathscr{H} which minimises empirical loss

$$
\frac{\left.\frac{1}{\ell} \sum_{i=1}^{\ell} \operatorname{loss}\left(\xi\left(G_{i}, \mathbf{v}_{i}\right), y_{i}\right)\right)}{\mathbf{q}}
$$

Loss function is a mapping from $\mathbb{Y} \times \mathbb{Y} \rightarrow \mathbb{R}$

Loss functions

* Choice depends on learning task (regression, classification,...)
* L1: $\operatorname{loss}\left(y_{\text {predicted, }}, y_{\text {true }}\right):=\left|y_{\text {predicted }}-y_{\text {true }}\right|$
* L2: loss $\left(y_{\text {predicted }}, y_{\text {true }}\right):=\left(y_{\text {predicted }}-y_{\text {true }}\right)^{2}$
- (Binary) cross entropy: $\operatorname{loss}\left(y_{\text {predicted }}, y_{\text {true }}\right):=y_{\text {true }} \log \left(y_{\text {predicted }}+\left(1-y_{\text {true }}\right) \log \left(1-y_{\text {predicted }}\right)\right.$

Graph learning

* Graph learning systems solve ERM using back propagation and gradient descent...

$$
\left.\hat{\xi}: \arg \min _{\xi \in \mathscr{H}} \frac{1}{\ell} \sum_{i=1}^{\ell} \operatorname{loss}\left(\xi\left(G_{i}, \mathbf{v}_{i}\right), y_{i}\right)\right)
$$

Graph learning

* Graph learning systems solve ERM using back propagation and gradient descent...

Our focus will be on the expressive power of hypothesis classes

Expressive power

* Which embeddings can be expressed by embeddings in \mathscr{H} ?
* Which embeddings can be approximated by embeddings in \mathscr{H} ?
* Which inputs can be separated/distinguished by embeddings in \mathscr{H} ?

Notions of expressivity I

* Let $\Xi: \mathscr{G} \rightarrow\left(\mathscr{V}^{p} \rightarrow \mathbb{Y}\right)$ be a p-vertex embedding and let \mathscr{C} be a subset of \mathscr{G}
\mathscr{H} can \mathscr{C}-express Ξ if there exists a $\xi \in \mathscr{H}$ such that for all $G \in \mathscr{C}, \mathbf{v} \in V_{G}^{p}$:
$\xi(G, \mathbf{v})=\Xi(G, \mathbf{v})$
\mathscr{H} can \mathscr{C}-approximate Ξ if for any $\epsilon>0$
there exists a $\xi_{\epsilon} \in \mathscr{H}$ such that for all $G \in \mathscr{C}, \mathbf{v} \in V_{G}^{p}:\left\|\xi_{\epsilon}(G, \mathbf{v})-\Xi(G, \mathbf{v})\right\| \leq \epsilon$

Notions of expressivity II

Separation/distinguishing power of \mathscr{H}

$$
\rho(\mathscr{H}):=\{(G, \mathbf{v}, H, \mathbf{w}) \mid \forall \xi \in \mathscr{H}: \xi(G, \mathbf{v})=\xi(H, \mathbf{w})\}
$$

* All pairs of inputs that cannot be separated by any embedding in \mathscr{H}

Distinguishing power

- Strongest power: \mathscr{H} powerful enough to detect non-isomorphic graphs
* Weakest power: \mathscr{H} cannot differentiate any two graphs

Distinguishing power

* Allows for comparing different classes of embeddings methods!

$$
\rho(\text { methods } 1) \subseteq \rho(\text { methods } 2)
$$

Methods1 is more powerful than Methods2
Methods 2 is bounded by Methods 1 in power

$$
\rho(\text { methods } 1)=\rho(\text { methods } 2)
$$

Both methods are as powerful

* Allows for comparing embedding methods with algorithms, logic, ...

Distinguishing power

* Allows for comparing different classes of embeddings methods!

$\rho($ methods 1$) \subseteq \rho($ methods 2$)$

Methods1 is more powerful than Methods2 Methods 2 is bounded by Methods 1 in power

$$
\rho(\text { methods } 1)=\rho(\text { methods } 2)
$$

Both methods are as powerful

* Allows for comparing embedding methods with algorithms, logic, ...

Expressive power in ML community

* Focus has been on distinguishing power of classes \mathscr{H} of embedding methods.
* Goal is to characterise $\rho(\mathscr{H})$ in a way to sheds light on what graph properties a learning method can detect/use.
* We see an example shortly for $\mathscr{H}=$ the class of Message-Passing Neural Networks (MPNNs)

Expressive power in ML community

* Search for increase in expressive power has led to surge of new methods of graph learning.
* Despite theoretical underpinning... still a bit of alchemy to find the right method...

Li hico! la panarrece l'age murr la sumease

We will gradually fill in this landscape with recent graph learning methods

Questions?

The most popular type of $G \mathcal{N N s}$

A little history

Sll

A little history

Message passing neural networks

A class of invariant vertex and graph embedding methods

Idea behind MPNNs: Neighbour aggregation

Every vertex defines a computation graph

Neural networks

MPNNs: Vertex embedding

$\xi(G, v):=\xi^{(L)} \circ \xi^{(L-1)} \circ \cdots \circ \xi^{(0)}(G, v)$
Message Passing Layers

$$
\begin{aligned}
& \xi^{(0)}(G, v):=\text { Hot-one encoding of label of vertex } v \\
& \xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right)
\end{aligned}
$$

MPNNs: Vertex embedding

$$
\xi^{(0)}(G, v):=\text { Hot-one encoding of label of vertex } v
$$

$$
\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right)
$$

Message Passing between v and its neighbours $u \in N_{G}(v)$

MPNNs: Vertex embedding

Message Passing Layers

$$
\begin{aligned}
& \xi^{(0)}(G, v):=\text { Hot-one encoding of label of vertex } v \\
& \xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right) \\
& \begin{array}{c}
\text { Message Passing between } v \text { and its } \\
\text { Ueighbours } u \in N_{G}(v)
\end{array} \\
& \text { Update and aggregate function contain }
\end{aligned}
$$

MPNNs: Graph embedding

$$
\frac{\rho(G):=\rho \circ \xi^{(L)} \circ \xi^{(L-1)} \circ \ldots \circ \xi^{(0)}(G, v)}{\text { Readout }}
$$

$$
\begin{aligned}
& \rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right) \\
& \text { Has learnable parameters }
\end{aligned}
$$

Typical choices for update, aggregate and readout: Multilayer Perceptrons

MPNNs: Graph embedding

$$
\rho(G):=\rho \circ \xi^{(L)} \circ \xi^{(L-1)} \circ \ldots \circ \xi^{(0)}(G, v)
$$

$$
\begin{aligned}
& \rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right) \\
& \text { Has learnable parameters } \\
& \text { Aggregation over all vertices }
\end{aligned}
$$

Typical choices for update, aggregate and readout: Multilayer Perceptrons

MPNN example: GNN 101

* Non-linear activation function σ (ReLU, sign, sigmoid, ...)
* $\mathbf{F}_{v o}^{(t)} \in \mathbb{R}^{d}$ denotes embedding of vertex v

* Weight matrices $\mathbf{W}_{1}^{(t)} \in \mathbb{R}^{d \times d}$ and $\mathbf{W}_{2}^{(t)} \in \mathbb{R}^{d \times d}$ and bias vector $\mathbf{b} \in \mathbb{R}^{1 \times d}$

Matrix form

$$
\begin{aligned}
& \mathbf{F}_{v_{0}}^{(0)}:=L_{G}(v) \longleftarrow \text { Embedding vertex labels } \\
& \mathbf{F}_{v_{0}}^{(t)}:=\sigma\left(\mathbf{F}_{v 0}^{(t-1)} \mathbf{W}_{1}^{(t)}+\sum_{u \in N_{G}(v)} \mathbf{F}_{u 0}^{(t-1)} \mathbf{W}_{2}^{(t)}+\mathbf{b}^{(t)}\right) \\
& \mathbf{F}^{(t)}:=\sigma\left(\mathbf{F}^{(t-1)} \mathbf{W}_{1}^{(t)}+\mathbf{A} \mathbf{F}^{(t-1)} \mathbf{W}_{2}^{(t)}+\mathbf{B}^{(t)}\right) \quad \begin{array}{c}
\text { Aggregation ov } \\
\text { neighbours }
\end{array}
\end{aligned}
$$

GNN 101: Graph embedding

* Weight matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ and and bias vector $\mathbf{b} \in \mathbb{R}^{1 \times d}$

$$
\begin{aligned}
& \mathbf{F}^{(t)}:=\sigma\left(\sum_{v \in V_{G}} \mathbf{F}^{(L)} \mathbf{W}+\mathbf{b}\right)_{\text {Aggregation over all }} \\
& \text { vertices }
\end{aligned}
$$

GNN 101: Graph embedding

* Weight matrix $\mathbf{W} \in \mathbb{R}^{d \times d}$ and and bias vector $\mathbf{b} \in \mathbb{R}^{1 \times d}$

$$
\mathbf{F}^{(t)}:=\sigma\left(\sum_{v \in V_{G}} \mathbf{F}^{(L)} \mathbf{W}+\mathbf{b}\right)_{\substack{\text { Aggregation over all } \\ \text { vertices }}}
$$

ERM: Find best parameters $\mathbf{W}_{1}^{(1)}, \ldots, \mathbf{W}_{1}^{(L)}, \mathbf{W}_{2}^{(1)} \ldots, \mathbf{W}_{2}^{(L)}, \mathbf{W}, \mathbf{b}^{(1)}, \ldots, \mathbf{b}^{(L)}, \mathbf{b}$

Two more examples of MPNNs

* Graph Isomorphism Networks (GIN)

$$
\mathbf{F}_{v 0}^{(t)}:=\operatorname{MLP}^{(t)}\left(\left(1+\epsilon^{(t)}\right) \mathbf{F}_{v 0}^{(t-1)}+\sum_{u \in N_{G}(v)} \mathbf{F}_{u 0}^{(t-1)}\right)
$$

* Graph Convolution Network (GCN)

$$
\mathbf{F}_{v_{0}}^{(t)}:=\operatorname{MLP}^{(t)}\left(\frac{1}{\sqrt{\mid N_{G}(v)+1}} \sum_{u \in N_{G}(v) \cup\{u\}} \frac{1}{\sqrt{\mid N_{G}(u)+1}} \mathbf{F}_{u 0}^{(t-1)}\right)
$$

MPNNs: Expressive power

What is ρ (MPNNs)?

MPNNs: Expressive power

What is ρ (MPNNs)?

Recall: All pairs of graphs (G, H) such that all MPNNs return same graph embedding on both graphs.

MPNNs: Expressive power

What is ρ (MPNNs)?
\downarrow
Recall: All pairs of graphs (G, H) such that all MPNNs return same graph embedding on both graphs.

Understanding ρ (MPNNs) translates in understanding power of GNN 101, GCNs, GINs,

MPNNs: Expressive power

What is ρ (MPNNs)?

Recall: All pairs of graphs (G, H) such that all MPNNs return same graph embedding on both graphs.

Understanding ρ (MPNNs) translates in understanding power of GNN 101, GCNs, GINs,

A short detour to graph isomorphism testing

MPNNs and isomorphic graphs

* Because of invariance: MPNNs embed isomorphic graphs in the same way. That is, if $G \cong H \Rightarrow(G, H) \in \rho($ MPNN $)$
* Can MPNNs embed non-isomorphic graphs differently?

Equivalence class of Isomorphic graphs

The graph isomorphism problem

Given two graph $G=\left(V_{G}, E_{G}, L_{G}\right)$ and $H=\left(V_{H}, E_{H}, L_{H}\right)$: are they isomorphic? Or is $\underline{G \cong H}$?

* Does there exist a graph isomorphism $\pi: V_{G} \rightarrow V_{H}$?
* Theory: computational complexity is open.
* Quasi-polynomial algoritm $n^{\log (n)^{(1)}}$ by László Babai (2016).
* Practice: mostly solvable very fast.

One-sided test: Colour refinement

Apply heuristic on G and H : If Heuristic say "no" then $G \nsubseteq H$, otherwise we do not know.

* Common heuristic is colour refinement
* In paper 1968 by Boris Weisfeiler and Andrei Leman.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms.

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms. Stops when colour partition does not change (max n iterations)

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms. Stops when colour partition does not change (max n iterations)

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms. Stops when colour partition does not change (max n iterations)

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms. Stops when colour partition does not change (max n iterations)

Colour refinement

* Initial: All vertices have their original colour (label)
* Iteration: Separation of identically coloured vertices based on colour histograms of neighbours.
* Two graphs are non-isomorphic if they have different colour histograms. Stops when colour partition does not change (max n iterations)

Color refinement

* Extensively studied in the theoretical computer science community
* Many different characterisations of when two graphs have the same colour histograms (equivalent for colour refinement).
- Successful on random graphs with high probability
* Weak expressive power

ρ (colour refinement)

* Cannot distinguish d-regular graphs
* Cannot count cycles (triangles)
* Only tree information

ρ (colour refinement)

* Cannot distinguish d-regular graphs
* Cannot count cycles (triangles)
* Only tree information

Back to MPNNs

MPNNs \& Colour refinement

Theorem (Xu et al. 2019, Morris et al. 2019)

If colour refinement cannot tell two graphs apart then neither can any MPNN!

MPNNs \& Colour refinement

Theorem (Xu et al. 2019, Morris et al. 2019)

If colour refinement cannot tell two graphs apart then neither can any MPNN!

MPNNs

$\xi^{(0)}(G, v):=$ Hot-one encoding of label of vertex v
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right)$ $\rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)$

MPNNs \& Colour refinement

Theorem (Xu et al. 2019, Morris et al. 2019)

If colour refinement cannot tell two graphs apart then neither can any MPNN!

MPNNs

$\xi^{(0)}(G, v):=$ Hot-one encoding of label of vertex v
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right)$ $\rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)$

$$
\begin{aligned}
& \text { Color refinement } \\
& \operatorname{cr}^{(0)}(G, v):=\text { Initial label of } v \\
& \operatorname{cr}^{(t)}(G, v):=\operatorname{Hash}\left(\operatorname{cr}^{(t-1)}(G, v),\left\{\left\{\operatorname{cr}^{(t-1)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right) \\
& \rho(G):=\left\{\left\{\operatorname{cr}(G, v) \mid v \in V_{G}\right\}\right\}
\end{aligned}
$$

\longrightarrow No MPNN can separate these graphs

MPNNs \& Colour refinement

Recall:

We have just shown: ρ (colour refinement $) \subseteq \rho($ MPNNs $)$
Expressive power of MPNNs is upper bounded by colour refinement

Lower bound?

* We have seen that MPNNs cannot separate more graphs than colour refinement.
* Can colour refinement separate more graphs than MPNNs?

Lower bound?

* We have seen that MPNNs cannot separate more graphs than colour refinement.
* Can colour refinement separate more graphs than MPNNs? No!

```
Theorem (Morris ct al. 2019)
There exists a GNN }101\mathrm{ which can embed G and H differently when colour refinement assigns them different colours
```

* The class of MPNNs is as powerful (or weak) as colour refinement

What else can we say?

$\rho($ colour refinement $)=\rho($ MPNNs $)$

What else can we say?

$\rho($ colour refinement $)=\rho($ MPNNs $)$

Other - more insightful - characterisations?

What else can we say?

$$
\rho(\text { colour refinement })=\rho(\mathrm{MPNNs})
$$

Other - more insightful - characterisations?

A detour to homomorphism counts

Homomorphisms

* Let $P=\left(V_{P}, E_{P}, L_{P}\right)$ and $G=\left(V_{G}, E_{G}, L_{G}\right)$ be graphs.
* A function $h: V_{P} \rightarrow V_{G}$ is a homomorphism if it is edge preserving $(v, w) \in E_{p} \Rightarrow(h(v), h(w)) \in E_{G}$ and label preserving.

Homomorphism counts

* Define $\underline{\operatorname{HOM}(P, G)}:=\{$ all homomorphisms from P to $G\}$
- Define hom $(P, G):=|\operatorname{HOM}(P, G)|$.

Homomorphism counts

* Define $\underline{H O M(P, G)}:=\{$ all homomorphisms from P to $G\}$
- Define hom $(P, G):=|\operatorname{HOM}(P, G)|$.

\#vertices $=4$

Homomorphism counts

* Define $\underline{\operatorname{HOM}(P, G)}:=\{$ all homomorphisms from P to $G\}$
- Define hom $(P, G):=|\operatorname{HOM}(P, G)|$.

Homomorphism counts

* Define $\underline{H O M(P, G)}:=\{$ all homomorphisms from P to $G\}$
- Define hom $(P, G):=|\operatorname{HOM}(P, G)|$.

Homomorphisms

* Weaker notion than subgraph isomorphism (see later)
* Underlies semantics of many graph query languages
* Algebra of homomorphism counts: A rich and active area of research.

Homomorphisms

* Weaker notion than subgraph isomorphism (see later)
* Underlies semantics of many graph query languages
* Algebra of homomorphism counts: A rich and active area of research.

Back to MPNNs

MPNNs and hom counts

Theorem (Dell et al. 2019, Dvorák 2010)

$$
\begin{aligned}
\operatorname{hom}(T, G) & =\operatorname{hom}(T, H) \text { for all trees } T \\
& \text { if and only if }
\end{aligned}
$$

colour refinement cannot distinguish G from H.

> Corollary $\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all trees T if and only if no MPNN can distinguish G from H.

Follows from $\rho(\mathrm{cr})=\rho(\mathrm{MPNN})$

* MPNNs can only detect tree information from a graph!

Beyond distinguishing power?

* Logical expressiveness
* Approximation properties (universality)

Colour refinement (again)

It was mentioned that ρ (colour refinement) has many characterisations.
Of interest is also a logical one, in particular First-order logic with 2 variables and counting quantifiers $\left(C_{2}\right)$.

$$
\varphi(x)=\exists^{\leq 5} y\left(E(x, y) \wedge \exists^{\geq 2} x\left(E(y, x) \wedge L_{a}(x)\right)\right)
$$

Given graph G, vertex $v \in V_{G}$ satisfies φ :

$$
(G, v) \vDash \varphi
$$

Colour refinement (again)

It was mentioned that ρ (colour refinement) has many characterisations.
Of interest is also a logical one, in particular First-order logic with 2 variables and counting quantifiers $\left(C_{2}\right)$.

$$
\varphi(x)=\exists^{\leq 5} y\left(E(x, y) \wedge \exists^{\geq 2} x\left(E(y, x) \wedge L_{a}(x)\right)\right)
$$

Given graph G, vertex $v \in V_{G}$ satisfies φ : It has at most 5 neighbours $(G, v) \vDash \varphi$ each with at least to neighbours labeled "a"

Colour refinement and C_{2}

Theorem (Cai et al. 1992)

Two vertices in a graph have the same colour after t iterations of colour refinement if and only if these vertices satisfy the same unary C_{2} formulas of quantifier depth t

$$
\rho(\text { colour refinement })=\rho(\mathrm{MPNNs})=\rho\left(\mathrm{C}_{2}\right)
$$

Which unary C_{2} formulas can MPNNs express?

* Not all: $\varphi(x):=L_{b}(x) \wedge \exists y L_{r}(y)$

I am blue and there exist a red vertex somewhere...

```
H}\mathrm{ can }\mathscr{C}\mathrm{ -express }\Xi\mathrm{ if there exists a }\xi\in\mathscr{H
such that for all }G\in\mathscr{C},\mathbf{v}\in\mp@subsup{V}{G}{p
\xi(G,\mathbf{v})=\Xi(G,\mathbf{v})
```


Which unary C_{2} formulas can MPNNs express?

* Not all: $\varphi(x):=L_{b}(x) \wedge \exists y L_{r}(y)$

I am blue and there exist a red vertex somewhere...

```
H}\mathrm{ can }\mathscr{C}\mathrm{ -express }\Xi\mathrm{ if there exists a }\xi\in\mathscr{H
such that for all }G\in\mathscr{C},\mathbf{v}\in\mp@subsup{V}{G}{p
\xi(G,\mathbf{v})=\Xi(G,\mathbf{v})
```


Cannot be reached by message passing!

Which unary C_{2} formulas can MPNNs express?

* Not all: $\varphi(x):=L_{b}(x) \wedge \exists y L_{r}(y)$
* Graded modal logic: syntactical fragment of C_{2} in which quantifiers are of the form $\exists^{\geq N}\left(E(x, y) \wedge \varphi^{\prime}(y)\right)$

Theorem (Barceló et al. 2020)

Let $\varphi(x)$ be a unary C_{2} formula. Then, $\varphi(x)$ is equivalent to a graded modal logic formula if and only if $\varphi(x)$ is expressible by the class of MPNNs.

$$
\exists \xi \in \text { MPNNs }: \forall G \in \mathscr{G}, \forall v \in V_{G}:(G, v) \vDash \varphi \Leftrightarrow \xi(G, v)=1
$$

MPNN+: Extended MPNNs

* Can we extend MPNNs such that all C_{2} formulas (including $\left.\varphi(x):=L_{b}(x) \wedge \exists y L_{r}(y)\right)$ can be expressed?
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right)$
Add global aggregation in every layer
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u) \mid u \in N_{G}(v)\right\}\right\}\right)\right.$

$$
\left.\operatorname{Read}^{(t)}\left(\left\{\left\{\xi^{(t)}(G, u) \mid u \in V_{G}\right\}\right\}\right)\right)
$$

MPNNs+

Theorem (Barceló et al. 2020)

Every unary C_{2} formula $\varphi(x)$ is expressible by the class of MPNNs +

* The corresponding colour refinement version is known as the onedimensional Weisfeiler-Leman algorithm or 1-WL

Can MPNN+ express more formulas? Open problem.

$$
\rho(1-\mathrm{WL})=\rho(\mathrm{MPNNs}+)
$$

Approximation properties

* Equip set of graphs \mathscr{G} with a topology and assume that \mathscr{H} consist of continuous graph embeddings from \mathscr{G} to \mathbb{R}.
* Let $\mathscr{C} \subseteq \mathscr{G}$ be a compact set of graphs.

Theorem (Azizian \& Lelarge 2021. G. and Reutter 2022)
If \mathscr{H} is closed under linear combinations and product, then \mathscr{H} can \mathscr{E}-approximate any continuous function $\Xi: \mathscr{C} \rightarrow \mathbb{R}$ satisfying

$$
\rho(\mathscr{H}) \subseteq \rho(\{\Xi\}) .
$$

- Can be generalised to general embeddings with output space \mathbb{R}^{d}

MPNNs: Approximation

Theorem (Azizian \& Lelarge 2021, G. and Reutter 2022)
On compact set of graphs, MPNNs can approximate any continuous graph embedding
$\Xi: \mathscr{C} \rightarrow \mathbb{R}$ satisfying $\rho($ colour refinement $) \subseteq \rho(\{\Theta\})$

* We know $\rho($ MPNNs $)=\rho($ colour refinement $)$
* Update functions can be used to approximate product and take linear combinations of MPNNs
* Intricate relation between distinguishing power and approximation properties

Universality and graph isomorphism

Theorem (Chen et al. (2019)
In order for a class of methods to be able o approximate any (invariant) continuous functions, the class of methods should be able to distinguish any two non-isomorphic graphs.

Proof

- Minimal size $\rho(\mathscr{H}) \subseteq \rho(\{\Xi\})$

$$
(G, H) \in \rho(\mathscr{H}) \Leftrightarrow G \cong H
$$

Questions?

Feature Augmentation
Boost the expressive power by adding information

More expressive MPNNs?

Feature engineering

* Deep learning and MPNNs have replaced "old school" feature engineering approach.

0

* Number of edges
\longrightarrow Number of cycles of length $5 \longrightarrow \mathbb{R}^{d} \longrightarrow$ SVM
* Centrality measures
* MPNNs were supposed to learn such features automatically ...

Idea \#1: Adding expressive features

Recall:
Theorem
$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all trees T if and only if no MPNN can distinguish G from H.

Idea \#1: Adding expressive features
 Theorem
 Recall: $\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all trees T if and only if no MPNN can distinguish G from H.

* What if we add subgraph information before doing messagepassing?

\uparrow
More than trees

Idea \#1: Adding expressive features

Theorem

Recall: $\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all trees T if and only if no MPNN can distinguish G from H.

* What if we add subgraph information before doing messagepassing?

More than trees

Structural encodings

1.Choose collection of rooted graph patterns/motifs

$$
\mathscr{P}:=\left\{P_{1}^{r}, \ldots, P_{\ell}^{r}\right\}
$$

2.Choose how to match subgraphs in \mathscr{P} with data graph G
3.Add count of matches to vertices as extended features.

$$
P^{r}=\left(V_{P}, E_{P},\{r\}\right)
$$

?

Matches

* Homomorphism: edge preserving
* Subgraph isomorphism: bijection, edge preserving
* Induced subgraph isomorphism: bijection, edge preserving (both ways)

$$
P^{r}=\left(V_{P}, E_{P},\{r\}\right)
$$

$$
\pi: V_{P} \rightarrow V_{S} \subseteq V_{G} \text { containing } v
$$

subiso($\left.P^{r}, G^{v}\right)$
indsubiso $\left(P^{r}, G^{v}\right)$

Matches

* Homomorphism: edge preserving
* Subgraph isomorphism: bijection, edge preserving
* Induced subgraph isomorphism: bijection, edge preserving (both ways)

$$
P^{r}=\left(V_{P}, E_{P},\{r\}\right)
$$

$$
\pi: V_{P} \rightarrow V_{S} \subseteq V_{G} \text { containing } v
$$

\mathscr{P}-MPNNs

* Add structural encoding as vertex features and run MPNN

$$
\mathscr{P}:=\left\{P_{1}^{r}, \ldots, P_{t}^{r}\right\}
$$

\mathscr{P}_{-}MPNNs
$\xi^{(0)}(G, v):=$ Hot-one encoding of label of vertex $v+\operatorname{hom}\left(P_{1}^{r}, G^{v}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{v}\right)$
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, \hat{x}), \operatorname{hom}\left(P_{1}^{r}, G^{u}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{u}\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right)$
$\rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)$
hom counts of patterns

* Did we increase expressive power?

$\mathscr{P}-\mathrm{MPNNs}$

$$
\mathscr{P}=\{0-2\} \begin{aligned}
& \text { (2) } \underbrace{v}_{0}(2)(2) \\
& \underbrace{(2)}_{G_{1}}(2)
\end{aligned}
$$

H_{1}

$$
\text { (c) }=\text { hom count }
$$

* We have seen that these graphs equivalent for colour refinement but clearly not for $\mathrm{O}_{0}-\mathrm{MPNNs}$.
* So, increase in power!
* What is their precise expressive power?

\mathscr{P}-MPNNs: Expressive power

Theorem

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}-pattern trees T if and only if no P-MPNN can distinguish G from H.

\mathscr{P}-MPNNs: Expressive power

Theorem

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}-pattern trees T if and only if no P-MPNN can distinguish G from H.

$$
\mathscr{P}=\left\{\mathcal{O}_{0}\right\}
$$

Take tree: add in each tree vertex copies of rooted patterns

\mathscr{P}-MPNNs: Expressive power

Theorem

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}-pattern trees T if and only if no P-MPNN can distinguish G from H.

$$
\mathscr{P}=\left\{\mathcal{O}_{0}\right\}
$$

Take tree: add in each tree vertex copies of rooted patterns

Set (\mathcal{F})	MAE
None	0.47 ± 0.02
$\left\{C_{3}\right\}$	0.45 ± 0.01
$\left\{C_{4}\right\}$	0.34 ± 0.02
$\left\{C_{6}\right\}$	0.31 ± 0.01
$\left\{C_{5}, C_{6}\right\}$	0.28 ± 0.01
$\left\{C_{3}, \ldots, C_{6}\right\}$	0.23 ± 0.01
$\left\{C_{3}, \ldots, C_{10}\right\}$	$\mathbf{0 . 2 2} \pm \mathbf{0 . 0 1}$

Choice of matching?

* Graph Substructure Networks (GSNs): use subiso counts.

Choice of matching?

* Graph Substructure Networks (GSNs): use subiso counts.

* Expressive power of GSN? Reduction to homomorphism counts

$$
\operatorname{Spasm}(\because)=\{\because \neg \Delta, \sqcup, \perp \Delta, \backslash\} .
$$

More hom counts needed for same subgraph iso

GSNs: Expressive power

Theorem

If $\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}^{\star}-pattern trees T, then no SGN can distinguish G from H.

* A direct characterisation in terms of subiso is also possible.
* The choice of patterns in \mathscr{P} is crucial
* Simple patterns such as cycles and cliques work well.

The larger and complex $\mathscr{P} \Rightarrow$ more complexity counting

$$
\Rightarrow \text { more expressive power }
$$

- \mathscr{P}^{\star}-MPNNs
- \mathscr{P}-SGNs - $\mathscr{D}_{-M P N N S}$

Complexity

Idea \#2: (Random) Vertex identifiers

* Message-Passing is only based on vertex features and adjacency information.
* Two different vertices with the same vertex features will be treated the same (if they have the same colour in colour refinement).

What if we add vertex identifiers?

Vertex identifiers

Self identification: useful for cycle detection

In terms of colour refinement: every vertex has a unique colour

Logic comes to rescue

Theorem (Cai et al. 1992)
Recall: Two vertices in a graph have the same colour after t iterations of colour refinement if and only if these vertices satisfy the same unary C_{2} formulas of

If every vertex has a unique colour, then can be identified with a C_{2} formula
We can express in C_{2} a formula φ_{G} satisfying

$$
H \vDash \varphi_{G} \Longleftrightarrow H \cong G
$$

Logic comes to rescue

$$
\begin{aligned}
& \alpha_{v}(x): \bigwedge_{c \text { id of } v} \operatorname{Lab}_{c}(x) \wedge \\
& \beta_{v, w}(x, y):= \begin{cases}\alpha_{v}(x) \wedge \alpha_{w}(y) \wedge E(x, y) & \neg \operatorname{Lab}_{c^{\prime}}(x) \\
\alpha_{v}(x) \wedge \alpha_{w}(y) \wedge \neg E(x, y) & (v, w) \notin \in E_{G}\end{cases} \\
& \varphi_{G}:=\bigwedge_{v \in V_{G}}\left(\exists x \alpha_{v}(x) \wedge \neg \exists^{\geq 2} x \alpha_{v}(x)\right) \wedge \bigwedge_{v, w \in V_{G}} \exists x \exists y \beta_{v, w}(x, y)
\end{aligned}
$$

$$
H \vDash \varphi_{G} \Longleftrightarrow H \cong G
$$

MPNNs+ and vertex ids

Recall: Theorem

Every C_{2} formula is expressible by the class of MPNNs+

Idea: We use MPNNs+ to express φ_{G}

$$
\varphi_{G}:=\bigwedge_{v \in V_{G}}\left(\exists x \alpha_{v}(x) \wedge \neg \exists \geq 2 x \alpha_{v}(x)\right) \wedge \bigwedge_{v, w \in V_{G}} \exists x \exists y \beta_{v, w}(x, y)
$$

MPNNs+ and vertex ids

rMPNNs+

* How to choose identifiers? Common choice is at random!
* With high probability random features are vertex identifiers

Theorem

rMPNNs $(+)$ approximate any invariant graph/ vertex embedding with high probability

* Invariance of computed embedding only in expectation!

Invariance by averaging

* Add vertex identifiers $G \mapsto(G$, id)
* Take embedding method $\chi \in \mathscr{H}$
* All permutation $\pi \in S_{n}$ with $n=\left|V_{G}\right|$
* Average/Aggregate $P=S_{n}$:

$$
\xi(G):=\frac{1}{|P|} \sum_{\pi \in P} \xi(\pi(G, \mathrm{id}))
$$

$$
\xi(G):=\max _{\pi \in P} \xi(\pi(G, \mathrm{id}))
$$

Partial averaging, k-rMPNNs+

Loose interpretation of k-CLIP

Idea \#3: Use global information

* Extract global graph information and use it as positional encodings of vertices
- Spectral information
* Shortest paths (distance information)
* Biconnectivity (connectivity information)

Spectral graph theory

* Eigenvalues/vector: $\mathbf{M} \cdot \mathbf{v}=\lambda \mathbf{v}$
* For adjacency matrices: Eigenvalues and eigenvectors of Laplacian $\mathbf{L}_{G}=\mathbf{D}_{G}-\mathbf{A}_{G}$
$\left.\begin{array}{rrrr} & L_{G} \\ -1 & -1 & 0 & 0 \\ -1 & -1 & 0 \\ 0 & -1 & 2 & -1\end{array}\right)$
* Laplacian eigenvalues and vectors contain connectivity information * multiplicity 1 st eigenvalue \sim connected components.

Spectral MPNNs

Add eigenvectors as vertex features

MPNNs+eig

* Add Laplacian eigenvectors (spectrum) as features.
eig=eigenvalue+eigenvectors

$$
\left.\begin{array}{l}
\text { SpMPNNS } \\
\xi^{(0)}(G, v):=\text { Hot-one encoding of label of vertex } v+\left(\operatorname{eig}_{1}(v), \ldots, \operatorname{eig}_{n}(v)\right) \\
\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u), \xi^{(0)},\left(\operatorname{eig}_{1}(u), \ldots, \operatorname{eig}_{n}(u)\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right) \\
\rho(G)
\end{array}\right)=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right) .
$$

* Ambiguity in eigenvector selection
* Not permutation invariant.

MPNNs+eig

* Add Laplacian eigenvectors (spectrum) as features.
eig=eigenvalue+eigenvectors

$$
\left.\begin{array}{l}
\text { SpMPNNS } \\
\xi^{(0)}(G, v):=\text { Hot-one encoding of label of vertex } v+\left(\operatorname{eig}_{1}(v), \ldots, \operatorname{eig}_{n}(v)\right) \\
\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u), \xi^{(0)},\left(\operatorname{eig}_{1}(u), \ldots, \operatorname{eig}_{n}(u)\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right) \\
\rho(G)
\end{array}\right)=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right) .
$$

* Ambiguity in eigenvector selection
* Not permutation invariant.

Expressive poser of MPNNs+eig

* Are as powerful as MPNNs with revised vertex labels

* Difficult to analyse.

Spectral invariant

$$
\mathbf{A}=\sum_{\lambda} \lambda \mathbf{P}_{\lambda} \quad \mathbf{P}_{\lambda}=\left(\begin{array}{cccc}
p_{11}^{\lambda} & p_{12}^{\lambda} & \ldots & p_{1 n}^{\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1}^{\lambda} & p_{n 2}^{\lambda} & \ldots & p_{n n}^{\lambda}
\end{array}\right)
$$

Spectral invariant

$$
v \mapsto \operatorname{specinv}(v):=\left(\lambda, p_{v v}^{\lambda},\left\{\left\{p_{v u}^{\lambda} \mid u \in V_{G}\right\}\right\}\right)_{\lambda \in \Lambda}
$$

Spectral invariant

$$
\left.\begin{array}{rl}
\mathbf{A}= & \underset{\lambda}{\sum_{\lambda} \lambda \mathbf{P}_{\lambda} \quad \mathbf{P}_{\lambda}=\left(\begin{array}{cccc}
p_{11}^{\lambda} & p_{12}^{\lambda} & \cdots & p_{1 n}^{\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1}^{\lambda} & p_{n 2}^{\lambda} & \cdots & p_{n n}^{\lambda}
\end{array}\right)} \underset{v}{\text { Spectral invariant }}
\end{array}\right) \text { Multiset }
$$

Spectral invariant

$$
\left.\begin{array}{rl}
\mathbf{A}= & \underset{\lambda}{\sum_{\lambda} \lambda \mathbf{P}_{\lambda} \quad \mathbf{P}_{\lambda}=\left(\begin{array}{cccc}
p_{11}^{\lambda} & p_{12}^{\lambda} & \cdots & p_{1 n}^{\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1}^{\lambda} & p_{n 2}^{\lambda} & \cdots & p_{n n}^{\lambda}
\end{array}\right)} \underset{\stackrel{\text { Spectral invariant }}{v \mapsto \operatorname{specinv}(v)}}{ }:=\left(\lambda, p_{v v}^{\lambda},\left\{\left\{p_{v u}^{\lambda} \mid u \in V_{G}\right\}\right\}\right)_{\lambda \in \Lambda}
\end{array}\right) \text { Multiset }
$$

Graph properties
Number of length 3, 4, or 5 cycles, whether a graph is connected and the number of length k closed walks from any vertex to itself

Spectral invariant

$$
\left.\begin{array}{rl}
\mathbf{A}= & \sum_{\lambda}^{\sum_{\lambda} \lambda \mathbf{P}_{\lambda} \quad} \quad \mathbf{P}_{\lambda}=\left(\begin{array}{cccc}
p_{11}^{\lambda} & p_{12}^{\lambda} & \cdots & p_{1 n}^{\lambda} \\
\vdots & \vdots & \ddots & \vdots \\
p_{n 1}^{\lambda} & p_{n 2}^{\lambda} & \cdots & p_{n n}^{\lambda}
\end{array}\right) \\
\stackrel{\text { Spectral invariant }}{v \mapsto \operatorname{specinv}(v)}:=\left(\lambda, p_{v v}^{\lambda},\left\{\left\{p_{v u}^{\lambda} \mid u \in V_{G}\right\}\right\}\right)_{\lambda \in \Lambda}
\end{array}\right) \text { Multiset }
$$

Graph properties

Number of length 3, 4, or 5 cycles, whether a graph is connected and the number of length k closed walks from any vertex to itself

Beyond 1-WL/Colour Refinement
\square

SpecMPNN

Spectral invariant

$$
v \mapsto \operatorname{specin} v(v):=\left(\lambda, p_{v v}^{\lambda},\left\{\left\{p_{v u}^{\lambda} \mid u \in V_{G}\right\}\right\}\right)_{\lambda \in \Lambda}
$$

Variation used in Signet and BasisNet $\longrightarrow 2$-WL bound

Can be using combination with any MPNN

Theorem (Seppelt and Rattan (2023)

specMPNN bounded in power by $(1,1)$-WL and strictly lower than 2-WL

SpecMPNN

Spectral invariant

$$
v \mapsto \operatorname{specin} v(v):=\left(\lambda, p_{v v}^{\lambda},\left\{\left\{p_{v u}^{\lambda} \mid u \in V_{G}\right\}\right\}\right)_{\lambda \in \Lambda}
$$

Variation used in Signet and BasisNet \longrightarrow 2-WL bound

Can be using combination with any MPNN

Theorem (Seppelt and Rattan (2023)

specMPNN bounded in power by $(1,1)-$ WL and strictly lower than 2-WL

We discuss these WL's later

Questions?

Turning one graph into many

General idea

* Colour refinement equivalent graphs may contain colour refinement inequivalent subgraphs.

$$
\begin{gathered}
1-8 \\
1-8
\end{gathered}
$$

* View graphs as a collection of subgraphs then run MPNN

General idea

* Colour refinement equivalent graphs may contain colour refinement inequivalent subgraphs.
1-5
* View graphs as a collection of subgraphs then run MPNN

General idea

* Colour refinement equivalent graphs may contain colour refinement inequivalent subgraphs.

* View graphs as a collection of subgraphs then run MPNN

Subgraph \mapsto Vertex Aggregation

Vertex \mapsto Subgraph Aggregation

The subgraph GNN "wave"

The subgraph GNN "wave"

Selection policies

DS-GNN - vertex deletion
- edge deletion
- ego nets
- marked ego-nets

ID-GNNs - marked ego-nets
GNNs-AK - ego-nets
k-OSAN - size k subgraph marking

Popular/effective: ego-nets

$$
\begin{aligned}
& i=1-1 \\
& i-1 \\
& i-1
\end{aligned}
$$

General Subgraph MPNNs

* We discuss an extension of MPNNs called Ordered Subgraph Aggregation Networks
* General enough to capture most existing methods*
* Theoretical results on expressive power of OSANs translate directly to these methods.

k-OSAN

Initialisation:

Selection of k tuple of vertices g

$$
\pi(\nu, \underline{\mathbf{g}}):=\mathrm{UPD}_{\pi}(\text { type of } \underline{\mathbf{g}}, v)
$$

Induqed subgraph
Initial labels

$$
\xi^{(0)}(\nu, \mathbf{g}):=\text { UPD }(\text { type of } \mathbf{g}, v)
$$

Only edges adjacent to v

$$
D_{V}-D_{v}-D_{v}-D_{v} D_{v}-D_{v}
$$

Label them differently

Learnable function (MLP)

k-OSAN

Iteration t: run MPNN for each \mathbf{g}

$$
\xi^{(t)}(v, \mathbf{g}):=\operatorname{UPD}^{(t)}\left(\xi^{(t)}(v, \mathbf{g}), \operatorname{AGG}^{(t)}\left(\left\{\left\{\xi^{(t)}(u, \mathbf{g}) \mid u \in V_{G} \text { or } N_{G}(v)\right\}\right\}\right)\right.
$$

Subgraph \mapsto vertex Aggregation

$$
\xi(v):=\operatorname{AGG}\left(\left\{\left\{\xi^{(L)}(\nu, \mathbf{g}) \frac{\pi(v, \mathbf{g}) \neq 0\}\})}{\text { Selection policy }}\right.\right.\right.
$$

$\mathrm{k}^{-\mathrm{OSAN}^{T}}$

Iteration t: run MPNN for each \mathbf{g}

$$
\xi^{(t)}(v, \mathbf{g}):=\operatorname{UPD}^{(t)}\left(\xi^{(t)}(v, \mathbf{g}), \operatorname{AGG}^{(t)}\left(\left\{\left\{\xi^{(t)}(u, \mathbf{g}) \mid u \in V_{G} \text { or } N_{G}(v)\right\}\right\}\right)\right.
$$

Vertex \mapsto Subgraph aggregation

$$
\xi(\mathbf{g}):=\operatorname{AGG}\left(\left\{\left\{\xi^{(L)}(v, \mathbf{g}) \mid \pi(v, \mathbf{g}) \neq 0, \nu \in V_{G}\right\}\right\}\right)
$$

k-OSAN

Theorem (Oian et al. 2022)

- k-OSANs and k-OSANs ${ }^{t}$ encompass almost all subgraph methods with selection policy involving k vertices.
- Strictly bounded in expressive power by $(k+1)-W L$
- Incomparable to k-WL.
$\mathrm{k}=2$
* if 2-WL cannot distinguish graphs, then neither can 1-OSANs
* 2-WL can distinguish more graphs than 1-OSANs
* There exists graphs than can be distinguished by l-OSANs but not by MPNNs, and vice versa, there exists graphs that can be distinguished by MPNNs but not by l-OSAS

Subgraph GNNs

* Can always ensure to be strictly more expressive than MPNNs by including original graph in batch.
* Tractability only when easy subgraph policies are used, i.e., leading to a small number (linear) of subgraphs.
* Seems a good balance between complexity and expressiveness

Characterisation $\rho(k$-OSAN $)$

* To our knowledge no characterisation of the expressive power of subgraph GNNs (and k-OSANs in particular) in terms of homomorphism counts is known.
* An exception are the 1-OSANs.

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
- Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

Characterisation $\rho(1-\mathrm{OSAN})$

* Let \mathscr{F} be the class of all forests (collection of trees)
* Let \mathscr{F}^{+}be collection of graphs obtained by
* Taking forest $F \in \mathscr{F}$
* Taking set $\varnothing \neq B \subseteq V_{F}$ of vertices
* Contracting all vertices in B to a single vertex (removing loops and multi edges).

$$
\begin{aligned}
& n-2 \\
& i-1 \\
& i \rightarrow-n
\end{aligned}
$$

Characterisation $\rho(1-$ OSAN $)$

* Note: \mathscr{F}^{+}contains all trees, but also cycles etc.
* Note: treewidth of elements in \mathscr{F}^{+}is at most two.

Theorem (Seppelt \& Rattan, 2023)

$$
\begin{aligned}
\operatorname{hom}(F, G)= & \operatorname{hom}(F, H) \text { for all } F \in \mathscr{F}^{+} \\
& \text {if and only if }
\end{aligned}
$$

no l-OSAN can distinguish G from H.

* 1-OSANs (and also ID-aware GNNs, ...) have the ability to detect cycles, etc.

Questions?

K-dimensional Weisfeiler-Leman

Boosting expressive power by higher-order message-passing

Motivation

* We have seen that many graph embedding methods are bounded in expressive power by 1-WL or colour refinement
* To go beyond this, one can manually add more expressive features.
* In the theoretical computer science community, however, higherorder version of 1 -WL have been studied for a long time.
* Why not use these to build more powerful embedding methods?

More powerful heuristic

Apply heuristic on G and H : If Heuristic say "no" then $G \nsubseteq H$, otherwise we do not know.
$G \cong H$?
Colour refinement $\longrightarrow \mathrm{No} \rightarrow G \not \approx H$

More powerful heuristic

Apply heuristic on G and H : If Heuristic say "no" then $G \nsubseteq H$, otherwise we do not know.
$G \cong H$?
Colour refinement $\longrightarrow \mathrm{No} \longrightarrow G \not \approx H$ $\stackrel{\downarrow}{1-\mathrm{WL} \longrightarrow \mathrm{No} \longrightarrow G \nsubseteq H}$

More powerful heuristic

Apply heuristic on G and H : If Heuristic say "no" then $G \nsubseteq H$, otherwise we do not know.
$G \cong H$?
Colour refinement $\longrightarrow \mathrm{No} \longrightarrow G \not \approx H$

More powerful heuristic

Apply heuristic on G and H : If Heuristic say "no" then $G \nsubseteq H$, otherwise we do not know.
$G \cong H$?
Colour refinement $\longrightarrow \mathrm{No} \rightarrow G \nsubseteq H$

K-dimensional Weisfeiler-Leman

* Initial: Colour k-tuples of vertices according to label, adjacency and equality information.

$$
\Rightarrow \text { Same colour if same induced subgraph }
$$

Neighbours: two k-tuples $\mathbf{v}=\left(v_{1}, \ldots, v_{k}\right)$ and $\mathbf{w}=\left(w_{1}, \ldots, w_{k}\right)$ are i-neighbours if $v_{j}=w_{j}$ for all $j \neq i$

K-dimensional Weisfeiler-Leman

* Iteration: k-tuple colour depending on colours of i-neighbours.

$$
\begin{aligned}
\mathrm{w}_{k}^{(t+1)}\left(G, v_{1}, \ldots, v_{k}\right):= & \left(\mathrm{w}_{k}^{(t)}\left(G, v_{1}, \ldots, v_{k}\right), M^{(t)}\left(G, v_{1}, \ldots, v_{k}\right)\right) \\
M^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):= & \left(\mathrm{w}_{k+1}^{(0)}\left(v_{1}, \ldots, v_{k}, w\right),\right. \\
& \mathrm{w}_{k}^{(t)}\left(w, v_{2}, \ldots, v_{k}\right), \\
& \vdots \\
& \left.\mathrm{w}_{k}^{(t)}\left(v_{1}, \ldots, v_{k-1}, w\right) \mid w \in V_{G}\right)
\end{aligned}
$$

* Graphs: Histogram of colours $\mathrm{wl}_{k}^{(L)}(G, v, \ldots, v)$ for all $v \in V_{G}$

Properties of k-WL

Theorem (Cai et al. (1992)

Theorem (Cai et al. (1992)
Distinguishability of graphs by k-WL corresponds to distinguishability by $(\mathrm{k}+1)$-variable fragment of FO with counting quantifier $\left(C_{k+1}\right)$

* Graphs of size n: Isomorphism problem solved by n-WL
* Large neighbourhoods (nk) and n^{k} tuples

Characterisations of $\rho(k-W L)$

Recall: Theorem (Dell et al. 2018,
 $$
\begin{aligned} & \operatorname{hom}(T, G)=\operatorname{hom}(T, H) \text { for all trees } T \\ & \text { if and only if } \end{aligned}
$$
 colour refinement cannot tell apart G from H

Characterisations of $\rho(k-\mathrm{WL})$

Recall: Theorem (Dell et al. 2018,

$$
\begin{aligned}
& \operatorname{hom}(T, G)=\operatorname{hom}(T, H) \text { for all trees } T \\
& \text { if and only if }
\end{aligned}
$$

colour refinement cannot tell apart G from H

Now: Theorem (Dell et al. 2018, ...)
$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all graphs T of tree width k if and only if
$\mathrm{k}-$ WL cannot tell apart G from H

Characterisations of $\rho(k-\mathrm{WL})$

Recall: Theorem (Dell et al. 2018,

$$
\begin{aligned}
& \operatorname{hom}(T, G)=\operatorname{hom}(T, H) \text { for all trees } T \\
& \text { if and only if }
\end{aligned}
$$

colour refinement cannot tell apart G from H

Now:

Theorem (Dell et al. 2018.

Measures "how far from being a tree"
$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all graphs T of tree width k if and only if
k-WL cannot tell apart G from H

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k -clique

$$
\mathrm{k}=2
$$

\square

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k-clique

$$
k=2 \text { i> }
$$

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k-clique

$$
\begin{gathered}
\mathrm{k}=2 \\
\text { I }
\end{gathered}
$$

Treewidth

＊A k－tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$－clique and then iteratively adding a vertex connected to a k－clique

$$
\begin{aligned}
& \mathrm{k}=2 \\
& \text { B シ シ シ }
\end{aligned}
$$

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k-clique

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k -clique

$$
\mathrm{k}=2 \text { i> }
$$

* A partial k-tree is a subgraph of a k-tree

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k -clique
* A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k -tree

Treewidth

* A k-tree is a graph that can be obtained starting from a $(\mathrm{k}+1)$-clique and then iteratively adding a vertex connected to a k -clique
k=2 リ リ
* A partial k-tree is a subgraph of a k-tree

Treewidth of a graph is smallest k such that the graph is a partial k -tree

* Trees=Treewidth 1

Treewidth

* Alternative definition in terms of tree decomposition
* If u and v neighbours then there is "bag" containing them both.
* All bags containing a vertex v from a connected subtree.
* Graph has treewidth k if it has a tree decomposition with bags of size $\mathrm{k}+1$.

Treewidth

Treewidth

Treewidth

Treewidth

Treewidth

Question:

- tw(cycle of length k)?
- tw(k-clique)?

Back to \mathscr{P}-MPNNs and \mathscr{P}-GSNs

Back to $\mathscr{P}-M P N N s$ and $\mathscr{P}-G S N s$

\mathscr{P}-MPNNs

$\xi^{(0)}(G, v):=$ Hot-one encoding of label of vertex $v+\operatorname{hom}\left(P^{r}, G^{v}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{v}\right)$
$\xi^{(t)}(G, v):=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u), \operatorname{hom}\left(P^{r}, G^{u}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{u}\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right)$ $\rho(G):=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)$

Back to $\mathscr{P}-M P N N s$ and $\mathscr{P}-G S N s$

\mathscr{P}-MPNNs

$$
\begin{aligned}
\xi^{(0)}(G, v) & :=\text { Hot-one encoding of label of vertex } v+\operatorname{hom}\left(P^{r}, G^{v}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{v}\right) \\
\xi^{(t)}(G, v) & :=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u), \operatorname{hom}\left(P^{r}, G^{u}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{u}\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right) \\
\rho(G) & :=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)
\end{aligned}
$$

Theorem

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}-pattern trees T, if and only no \mathscr{P}-MPNN can distinguish G from H.

Back to \mathscr{P}-MPNNs and \mathscr{P}-GSNs

\mathscr{P}-MPNNs

$$
\begin{aligned}
\xi^{(0)}(G, v) & :=\text { Hot-one encoding of label of vertex } v+\operatorname{hom}\left(P^{r}, G^{v}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{v}\right) \\
\xi^{(t)}(G, v) & :=\operatorname{Upd}^{(t)}\left(\xi^{(t-1)}(G, v), \operatorname{Agg}^{(t)}\left(\left\{\left\{\xi^{(t-1)}(G, v), \xi^{(t)}(G, u), \operatorname{hom}\left(P^{r}, G^{u}\right), \ldots, \operatorname{hom}\left(P_{\ell}^{r}, G^{u}\right) \mid u \in N_{G}(v)\right\}\right\}\right)\right) \\
\rho(G) & :=\operatorname{Readout}\left(\left\{\left\{\xi^{(L)}(G, v) \mid v \in V_{G}\right\}\right\}\right)
\end{aligned}
$$

Theorem

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all \mathscr{P}-pattern trees T, if and only no \mathscr{P}-MPNN can distinguish G from H.

Theorem

If the patterns P in \mathscr{P} have maximal tree width k then the power of \mathscr{P}-MPPNs is bounded by k-WL. Similar result for $\mathscr{P}^{-G S N}$ using \mathscr{P}^{\star}-MPNNs.
\mathscr{P}_{k} max tree width k \mathscr{P}_{k}^{\star} max tree width k

Idea: higher-order GNNs

Theorem (Dell et al. 2018

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all graphs T of tree width k if and only if
k-WL cannot tell apart G from H

1-WL \longrightarrow MPNNs

Idea: higher-order GNNs

Theorem (Dell et al. 2018

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all graphs T of tree width k if and only if
k-WL cannot tell apart G from H

Idea: higher-order GNNs

Theorem (Dell et al. 2018

$\operatorname{hom}(T, G)=\operatorname{hom}(T, H)$ for all graphs T of tree width k if and only if
k-WL cannot tell apart G from H

k-MPNNs will detect more graph
 than MPNNs

k-Folklore GNNs (k-FGNs)

$$
\xi^{(t)}(G, \underbrace{v_{1}, \ldots, v_{k}}_{k \text {-vertex embedding }}):=\operatorname{MLP}_{1}^{(t)}\left(\sum_{u \in V_{G}} \prod_{i=1}^{k} \operatorname{MLP}_{2}^{(t)}\left(\xi^{(t-1)}\left(G, v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right)\right)\right)
$$

Expressive power?

k-Folklore GNNs (k-FGNs)

$$
\xi^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):=\operatorname{MLP}_{1}^{(t)}\left(\sum_{u \in V_{G}} \prod_{i=1}^{k} \operatorname{MLP}_{2}^{(t)}\left(\xi^{(t-1)}\left(G, v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right)\right)\right)
$$

Expressive power?
Theorem (Maron et al. 2019), Azizian and Lelarge 2021)

$$
\rho(k-\mathrm{FGNN})=\rho(k-\mathrm{WL})
$$

k-GNNs

A simpler architecture:

$$
\begin{gathered}
\xi^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):=\sigma\left(\xi^{(t-1)}\left(G, v_{1}, \ldots, v_{k}\right) \mathbf{W}_{1}^{(t)}+\left(\sum_{i=1}^{k} \sum_{u \in V_{G}} \xi^{(t)}\left(G, v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right)\right) \mathbf{W}_{2}^{(t)}\right) \\
\text { Global aggregation }
\end{gathered}
$$

Expressive power?

k-GNNs

A simpler architecture:

$$
\begin{gathered}
\xi^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):=\sigma\left(\xi^{(t-1)}\left(G, v_{1}, \ldots, v_{k}\right) \mathbf{W}_{1}^{(t)}+\left(\sum_{i=1}^{k} \sum_{u \in V_{G}} \xi^{(t)}\left(G, v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right)\right) \mathbf{W}_{2}^{(t)}\right) \\
\text { Global aggregation }
\end{gathered}
$$

Expressive power?
Theorem (Morris et al. 2019)

$$
\rho(k-\mathrm{GNN})=\rho(k-\mathrm{WL})
$$

Linear equivariant layers

$$
L: \mathbb{R}^{n^{k}} \rightarrow \mathbb{R}^{n^{\ell}} \text { s.t. } L\left(\mathbf{P}^{t} \mathbf{X P}\right)=\mathbf{P}^{t} L(\mathbf{X}) \mathbf{P} \text { for all permutation matrices } \mathbf{P}
$$

One can find a $\underline{\text { basis } \mathbf{B}_{\gamma}}$ s.t. $\mathbf{L}=\sum a_{\gamma} \mathbf{B}_{\gamma}$

$n=16, k=\ell=2$
\rightarrow Build higher-order GNN using linear equivariant layers

k-IGNs

$\xi^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):=\sigma\left(\sum_{\text {Equality types } \sim}^{\left.\sum_{\gamma} \sum_{w_{1}, \ldots, w_{k}} \mathbf{B}_{\gamma} \mathbf{W}_{\gamma}^{(t)} \xi^{(t-1)}\left(G, w_{1}, \ldots, w_{k}\right)+\sum_{\mu} \mathbf{B}_{\mu} \mathbf{W}_{\mu}^{(t)}\right)}\right.$

Theorem (Maron et al. 2019, G. and Reutter 2022)

$$
\rho(k-\mathrm{IGN})=\rho((k-1)-\mathrm{WL})
$$

Higher-order methods

* Do not scale well, but are expressive
* Do not leverage sparsity of graphs
* Powerful, but leads to overfitting

There are several attempts to make them scalable without sacrificing power.

"Local" k-GNNs: k-LGNNs

"Local" k-GNNs: k-LGNNs

"Local" k-GNNs: k-LGNNs

k-LGNNs

$$
\xi^{(t)}\left(G, v_{1}, \ldots, v_{k}\right):=\sigma\left(\xi^{(t-1)}\left(G, v_{1}, \ldots, v_{k}\right) \mathbf{W}_{1}^{(t)}+\left(\sum_{i=1}^{k} \sum_{\underline{\left(u, v_{i}\right) \in E_{G}}} \xi^{(t)}\left(G, v_{1}, \ldots, v_{i-1}, u, v_{i+1}, \ldots, v_{k}\right)\right) \mathbf{W}_{2}^{(t)}\right)
$$

Theorem (Morris et al. (2020), G and Reutter (2022)

$$
\rho((k+1)-\mathrm{WL}) \subsetneq \rho(k-\mathrm{LGNN}) \subsetneq \rho(k-\mathrm{WL})
$$

Can detect distance two $(\mathrm{k}+1)$-cliques

Let' stop filling in the landscape

Semi-conclusion

* Expressivity has been an important concept in graph learning since 2019
* Has been pushing forward the area: different techniques to boost power:
* k-WL, feature augmentation, subgraphs, structured modulated message passing,
* Expressive models juggle with
* Complexity, overfitting, ...

Semi-conclusion

* When methods are shown to be powerful: existential proofs.
* No reason that this power is met in practice.
* Also, distinguishing power is necessary but not sufficient in practice...

Semi-conclusion

* Expressivity has been an important concept in graph learning since 2019
* Has been pushing forward the area: different techniques to boost power:
* k-WL, feature augmentation, subgraphs, structured modulated message passing,
* Expressive models juggle with
* Complexity, overfitting, ...

What to use?

Subgraph

* Small graphs
- Good
compromise in general

Feature Augmentation

* Large training datasets
* Invariance not importnat
* Preprocessing ok

Higher-order

* Graphs are small
* Efficiency not essential
* Expressivity guarantee needed

Road ahead

Expressiveness

* A lot of recent (2023 progress)
* WL hierarchy needs better reconciliation with practice
* Hom count characterisations
* Relational

Connection with Learning??

- Optimisation and training unexplored
* Generalisation properties
* Sample efficiency?

 $x^{2} / 2 p i$
 Bounding embedding methods

An "easy" way to analyse the power of graph embeddings

How to get k-WL bounds?

Without knowing k-WL?

Higher-order MPNNs

* They are a generalisation of classical MPNNs.
* They provide a flexible mechanism to describe various graph learning architectures.

Easy way to obtain upper bounds on the expressive power of graph learning architectures.

Higher-order MPNNs

* Higher-order MPNNs are defined inductively and declaratively.
* We provide syntax and semantics.
* With each higher-order MPNN φ we associate:
- A dimension describing the output feature dimension; and
* A set of free variables and we write $\varphi(\mathbf{x})$ with $\mathbf{x}=\left\{x_{1}, \ldots, x_{\ell}\right\}$.

Higher-order MPNNs

Higher-order MPNN

Syntax
$\varphi(\mathbf{x})$ of dimension d and free variables $\mathbf{x}=\left\{x_{1}, \ldots, x_{\ell}\right\}$

Higher-order embedding
Semantics

$$
\xi_{\varphi}: \mathscr{G} \rightarrow\left(\mathscr{V}^{\ell} \rightarrow \mathbb{R}^{d}\right):\left(G, v_{1}, \ldots, v_{\ell}\right) \mapsto \mathbb{R}^{d}
$$

Higher-order MPNNs: Atomic

Atomic higher-order MPNNs: Syntax
Label: $\varphi\left(x_{i}\right):=\operatorname{Lab}_{j}\left(x_{i}\right)$ of dim 1 and free var x_{i}
Edge: $\varphi\left(x_{i}, x_{j}\right):=E\left(x_{i}, x_{j}\right)$ of dim 1 , free vars x_{i}, x_{j}
Equality: $\varphi\left(x_{i}, x_{j}\right):=\mathbb{1}\left[x_{i}=x_{j}\right]$ of dim 1 , free vars x_{i}, x_{j}

Higher-order MPNNs: Atomic

Atomic higher-order MPNNs: Syntax
Label: $\varphi\left(x_{i}\right):=\operatorname{Lab}_{j}\left(x_{i}\right)$ of dim 1 and free var x_{i}
Edge: $\varphi\left(x_{i}, x_{j}\right):=E\left(x_{i}, x_{j}\right)$ of dim1, free vars x_{i}, x_{j}
Equality: $\varphi\left(x_{i}, x_{j}\right):=\mathbb{1}\left[x_{i}=x_{j}\right]$ of dim 1, free vars x_{i}, x_{j}

Semantics

$\xi_{\varphi}:\left(v_{1}, v_{2}, \ldots, v_{p}\right) \mapsto j$ th feature of v_{i}
$\xi_{\varphi}:\left(v_{1}, v_{2}, \ldots, v_{p}\right) \mapsto \begin{cases}1 & \left(v_{i}, v_{j}\right) \in E \\ 0 & \text { otherwise }\end{cases}$
$\xi_{\varphi}:\left(v_{1}, v_{2}, \ldots, v_{p}\right) \mapsto \begin{cases}1 & v_{i}=v_{j} \\ 0 & \text { otherwise }\end{cases}$

Higher-order MPNNs: Atomic

Higher-order MPNNs: Function Application

Function application: Syntax
Let $\varphi_{1}\left(\mathbf{x}_{1}\right), \ldots, \varphi_{\ell}\left(\mathbf{x}_{1}\right)$ be higher-order MPNNs of $\operatorname{dim} d_{1}, \ldots, d_{\ell}$ and free vars $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\ell}$ Let $F: \mathbb{R}^{d_{1}+\cdots+d_{e}} \rightarrow \mathbb{R}^{d}$ be a function. Then,

$$
\varphi(\mathbf{x})=F\left(\varphi_{1}, \ldots, \varphi_{\ell}\right)
$$

is a higher-order MPNN of $\operatorname{dim} d$ and free vars $\mathbf{x}=\mathbf{x}_{1} \cup \cdots \cup \mathbf{x}_{\ell}$

Higher-order MPNNs: Function Application

Function application: Syntax

Let $\varphi_{1}\left(\mathbf{x}_{1}\right), \ldots, \varphi_{\ell}\left(\mathbf{x}_{1}\right)$ be higher-order MPNNs of $\operatorname{dim} d_{1}, \ldots, d_{\ell}$ and free vars $\mathbf{x}_{1}, \ldots, \mathbf{x}_{\ell}$ Let $F: \mathbb{R}^{d_{1}+\cdots+d_{e}} \rightarrow \mathbb{R}^{d}$ be a function. Then,

$$
\xi_{\varphi}:\left(v_{1}, \ldots, v_{p}\right) \mapsto F\left(\xi_{\varphi_{1}}\left(v_{1}, \ldots, v_{p}\right), \ldots, \xi_{\varphi_{t}}\left(v_{1}, \ldots, v_{p}\right)\right)
$$

Linear algebra Activation functions Anything you want...

Higher-order MPNNs: Aggregation

Aggregation: Syntax

Let $\varphi_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\varphi_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ be higher-order MPNNs of $\operatorname{dim} d_{1}$ and d_{2} and free vars $\mathbf{x}_{1}, \mathbf{x}_{2}$. Let Θ be a function mapping bags of vectors in $\mathbb{R}^{d_{1}}$ to a vector in \mathbb{R}^{d}. Then,

$$
\varphi\left(\mathbf{x}_{1}\right)=\operatorname{agg}_{\mathbf{x}_{2}}^{\Theta}\left[\varphi_{1} \mid \varphi_{2}\right]
$$

is a higher-order MPNN of $\operatorname{dim} d$ and free vars \mathbf{x}_{1}

Higher-order MPNNs: Aggregation

Aggregation: Syntax

Let $\varphi_{1}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ and $\varphi_{2}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right)$ be higher-order MPNNs of $\operatorname{dim} d_{1}$ and d_{2} and free vars $\mathbf{x}_{1}, \mathbf{x}_{2}$. Let Θ be a function mapping bags of vectors in $\mathbb{R}^{d_{1}}$ to a vector in \mathbb{R}^{d}. Then,

$$
\varphi\left(\mathbf{x}_{1}\right)=\operatorname{agg}_{\mathbf{x}_{2}}^{\Theta}\left[\varphi_{1} \mid \varphi_{2}\right]
$$

is a higher-order MPNN of $\operatorname{dim} d$ and free vars x

Semantics

$$
\xi_{\varphi}: \mathbf{v} \mapsto \theta\left(\left\{\left\{\xi_{\varphi_{1}}(\mathbf{v}, \mathbf{w}) \mid \xi_{\varphi_{2}}(\mathbf{v}, \mathbf{w}) \neq \mathbf{0}\right\}\right\}\right)
$$

Higher-order MPNNs: Aggregation

Θ is e.g., summation and $\varphi_{2}(x, y):=E(x, y)$ and $\varphi_{1}(x, y):=\mathbb{1}[y=y]$ We can count degrees as follows:

$$
\varphi(x)=\operatorname{agg}_{y}^{\text {sum }}[\mathbf{1}[y=y] \mid E(x, y)]
$$

Expressive Power of k-MPNNs

A higher-order MPNN is called a k-MPNN if it uses at most k variables. $\mathrm{k}-\mathrm{MPNNs}=$ class of $\mathrm{k}-\mathrm{MPNN}$

Expressive Power of k-MPNNs

A higher-order MPNN is called a k-MPNN if it uses at most k variables. k-MPNNs=class of k-MPNN

Theorem (G. And Reutter 2022)

$$
\rho(k-\mathrm{MPNNs})=\rho(k-\mathrm{WL})
$$

Expressive Power of k-MPNNs

A higher-order MPNN is called a k-MPNN if it uses at most k variables. k-MPNNs=class of $\mathrm{k}-\mathrm{MPNN}$

Theorem (G. And Reutter 2022)

$$
\rho(k-\mathrm{MPNNs})=\rho(k-\mathrm{WL})
$$

Take away: Bounding architectures is easy!!
Just write your architecture as higher-order MPNNs
Count variables

We end with some examples ...

MPNNs

We define $\varphi^{(0)}\left(x_{1}\right):=\mathbf{1}\left[x_{1}=x_{1}\right]$
Then for $t>0$, we get

$$
\varphi^{(t)}\left(x_{1}\right):=\operatorname{Upd}^{(t)}\left(\varphi^{(t-1)}\left(x_{1}\right), \operatorname{agg}_{x_{2}}^{\Theta^{(t)}}\left[\varphi^{(t-1)}\left(x_{2}\right) \mid E\left(x_{1}, x_{2}\right)\right]\right)
$$

For readout layer, we get

$$
\left.\varphi:=\operatorname{agg}_{x_{1}}^{\Theta}\left[\varphi^{(L)}\left(x_{1}\right) \mid \mathbb{1}\left[x_{1}=x_{1}\right]\right]\right)
$$

2 variables $\mapsto 1$-WL

Graph Convolutional Networks

Use $D^{-1 / 2}(I+A) D^{-1 / 2}$ as propagation matrix
$\varphi\left(x_{1}\right):=F\left(\operatorname{agg}_{x_{2}}^{\text {sum }}\left[1\left[x_{2}=x_{2}\right] \mid E\left(x_{1}, x\right)\right]\right)$ with $F: \mathbb{R} \rightarrow \mathbb{R}: x \mapsto \frac{1}{\sqrt{1+x}}$
We can use $\psi\left(x_{1}, x_{2}\right):=\times\left(\times\left(\varphi\left(x_{1}\right),+\left(\mathbf{1}\left[x_{1}=x_{2}\right], E\left(x_{1}, x_{2}\right)\right)\right), \varphi\left(x_{2}\right)\right)$ in the MPNN expressions from the previous slide.

2 variables $\mapsto 1$-WL

Simplified GNNs

* Uses path information $\mathbf{A}^{p} \mathbf{F}^{(0)}$ in a single layer.
*For $p=3$ and for $\varphi^{(0)}\left(x_{1}\right)$ initial feature:
$* \psi\left(x_{1}\right):=\operatorname{agg}_{x_{2}}^{\text {sum }}\left[\operatorname{aggs}_{x_{1}}^{\text {sum }}\left[\operatorname{agg}_{x_{2}}^{\text {sum }}\left[\varphi^{(0)}\left(x_{2}\right) \mid E\left(x_{1}, x_{2}\right)\right] \mid E\left(x_{2}, x_{1}\right)\right] \mid E\left(x_{1}, x_{2}\right)\right]$

2 variables $\mapsto 1$-WL

Subgraph count GNNs

* Use count of subgraphs to augment MPNNs
* homomorphism count hom $\left(P^{r}, G^{v}\right)$ for rooted motif P,
* subgraph iso count sub $\left(P^{r}, G^{\nu}\right)$ for rooted motif P
* If motif has tree width k then hom $\left(P^{r}, G^{\nu}\right)$ can be computed using $\mathrm{k}+\mathrm{l}$ variables.
* For example, $(G, v) \mapsto$ hom $\left(G^{v}\right)$ can be expressed as

$$
\begin{array}{r}
\varphi\left(x_{1}\right):=\sum_{x_{2}} \sum_{x_{3}}
\end{array} \begin{array}{r}
\\
\left(1 x_{1}, x_{2}\right) E\left(x_{1}, x_{3}\right) E\left(x_{2}, x_{3}\right)\left(\mathbb{1}\left[x_{1}=x_{1}\right]-\mathbb{1}\left[x_{1}=x_{2}\right]\right) \\
\left(1\left[x_{1}=x_{1}\right]-\mathbb{1}\left[x_{1}=x_{3}\right]\right)\left(\mathbb{1}\left[x_{1}=x_{1}\right]-\mathbb{1}\left[x_{2}=x_{3}\right]\right)
\end{array}
$$

$$
\mathrm{k}+1 \text { variables } \mapsto \mathrm{k} \text {-WL }
$$

Subgraph GNNs: vertices

$$
\begin{aligned}
& \text { MPNN MPNN MPNN MPNN MPNN MPNN } \\
& \varphi^{(t)}\left(x_{1}, x_{2}\right):=\operatorname{Upd}^{(t)}\left(\varphi^{(t)}\left(x_{1}, x_{2}\right):=1\left[x_{1}=x_{2}\right]\right. \\
& \left.1, x_{2}\right), \operatorname{agg}_{x_{3}}^{\Theta}\left[\varphi^{(t-1)}\left(x_{1}, x_{3}\right) \mid E\left(x_{2}, x_{3}\right]\right)
\end{aligned}
$$

Cotta et al.: Reconstruction for powerful graph representations (2021)
Bevilacqua et al.: Understanding and extending subgraph GNNS by rethinking their symmetries (2022
Huang et al.: Boosting the cycle counting power of graph neural networks with I2-GNNs (2022)
Papp et al.: DropGNN: Random dropouts increase the expressiveness of graph neural networks. (2021)
Qian et al.: Ordered subgraph aggregation networks. (2022)
You et al.: Identity-aware graph neural networks. (2021)
Zhang and P. Li. Nested graph neural networks (2021)
Zhao et al.: From stars to subgraphs: Uplifting any GNN with local structure awareness (2022)

3 variables $\mapsto 2$-WL

Subgraph GNNs: edges

$$
\varphi^{(t)}\left(x_{1}, x_{2}, x_{3}\right):=\operatorname{Upd}^{(t)}\left(\varphi^{(t-1)}\left(x_{1}, x_{2}, x_{3}\right), \operatorname{agg}_{x_{4}}^{\Theta}\left[\varphi^{(t-1)}\left(x_{1}, x_{2}, x_{4}\right) \mid E\left(x_{3}, x_{4}\right]\right)\right.
$$

4 variables $\mapsto 3-\mathrm{WL}$

Conclusion

* Takes a bit of practice but easy to get bounds
* Not guaranteed that these bounds are tight: depends on your programming skills in order to reduce number of variables.
* No lower bounds.

Please use it to get bounds!

